DIPLOMARBEIT

Zur Erlangung des akademischen Grades einer

Magistra der Pharmazie

an der Naturwissenschaftlichen Fakultät
der Karl-Franzens-Universität Graz

Guidelinekonforme Anwendungspraxis
oraler Antikoagulantien im LKH Villach
bei Patienten mit Vorhofflimmern

Vorgelegt von

Katrin Foditsch

Graz, Juni 2015
Danksagung

Ein großes Dankeschön gilt auch meinen Lieben, die mir während der Studienzeit immer tatkräftig zur Seite gestanden sind und mit mir Höhen und Tiefen gemeistert haben. Vielen Dank!
Kurzzusammenfassung

Abstract

Atrial fibrillation is an heart rhythm disorder that leads, depending on the type, without any therapy to cardiac embolism until an apoplexy or in the worst case to death. Patients with atrial fibrillation have a risk of almost 20% to get an apoplexy and the risk is increasing when patients grow older. This is the reason why such patients should be treated with an anticoagulant drug. One of the most important things during a medical treatment is to find the right measure, because on the one hand thrombosis/embolism and on the other hand bleeding should be prohibited. Therefore, it is necessary that patients have a very good compliance. To make it easier to choose the best anticoagulation therapy for atrial fibrillation, it is suggested to determine the risk of strokes by the CHA₂DS₂-VASc-Score and the risk of bleeding by the HAS- BLED- Score. These determinations are recommended in the ESC Guidelines for the management of atrial fibrillation. If patients receive anticoagulant therapy there are many possibilities for the treatment, for instance, Vitamin-K-Antagonists (VKA), that have been on the market for several years, or heparins, which are important for „Bridging“ and the direct oral anticoagulation (DOAK). Over the last few years DOAK has contributed to the replacement of VKA. The prescription of any anticoagulant therapy is carried out by a doctor. Whether or not anticoagulation therapy is needed, depends on the benefit/risk ratio of each patient.
Inhaltverzeichnis

Kurzzusammenfassung ... 3

1 Einleitung .. 4

2 Herzrhythmusstörungen .. 4
 2.1 Vorhofflimmern .. 5
 2.1.1 Definition .. 6
 2.1.2 Ursache ... 6
 2.1.3 Epidemiologie .. 6
 2.1.4 Pathophysiologie ... 7
 2.1.5 Risikofaktoren .. 10
 2.1.6 Symptome ... 11
 2.1.7 Komorbiditäten .. 12
 2.1.8 Diagnose .. 13
 2.1.9 Biomarker .. 13
 2.1.10 Klassifikation ... 13
 2.1.11 Scores .. 15
 2.2 Medikamentöse Therapie ... 18
 2.2.1 Frequenzregulierende Therapie .. 19
 2.2.2 Rhythmuserhaltende Therapie ... 20
 2.3 Vorhofflattern ... 23
 2.3.1 Definition .. 23
 2.3.2 Klassifikation .. 24
 2.3.3 Ursachen ... 24
 2.3.4 Pathophysiologie ... 24
 2.3.5 Therapie ... 24
 3 Antikoagulation .. 25
 3.1 Geschichte der Antikoagulantien ... 25
 3.2 Blutstillung, Blutgerinnung ... 26
 3.2.1 Primäre Hämostase ... 27
 3.2.2 Sekundäre Hämostase ... 28
 3.2.3 Gerinnungsparameter .. 32
 3.3 Medikamentöse Therapie ... 34
 3.4 DOAK ... 37
 3.4.1 Antidot, Gerinnungstests .. 38
3.4.2 Umstellung auf DOAK ... 38
3.4.3 Dabigatranetexilat ... 39
3.4.4 Apixaban ... 42
3.4.5 Rivaroxaban ... 45
3.5 VKA ... 48
3.5.1 Vitamin K ... 48
3.5.2 Phenprocoumon, Acenocoumarol .. 49
3.6 Heparine ... 52
3.7 Interaktionen ... 55
3.8 Dosierungsempfehlungen von DOAK lt. Guidelines 56
3.9 Dosierungsübersicht der OAK nach Indikation 57
3.10 DOAK vs. VKA ... 58
3.11 Kosten ... 60
4 Ziel der Arbeit .. 61
5 Methodik ... 63
5.1 Literaturrecherche .. 63
5.2 Erstellung eines Datenerhebungsblattes 63
5.3 Pretest ... 63
5.4 Datenerhebung ... 63
5.4.1 Einschlusskriterien .. 64
5.4.2 Ausschlusskriterien ... 65
5.5 Auswertung der Daten .. 65
6 Ergebnisse und Diskussion .. 66
6.1 Allgemeines zum Patientenkollektiv 66
6.2 Daten zur Medikation ... 69
6.2.1 Antikoagulantien bei bereits antikoagulierten Patienten 69
6.2.2 Antikoagulation bei Neuverordnung im KH 75
6.3 Laborparameter ... 76
6.3.1 Dosisanpassung bei Nierenfunktionsstörung 76
6.3.2 Dosisanpassung bei Leberfunktionsstörung 78
6.3.3 Geschlechtspezifische INR- Einstellung 79
6.4 Komorbiditäten, Interaktionen, Blutungen 80
6.4.1 Verteilung der Komorbiditäten ... 80
6.4.2 Zusammenhang zwischen Interaktionen und Blutungsrisiko 82
6.5 Guidelinekonformität ... 83
6.5.1 Bestimmung der Scores ...83
6.5.2 Antikoagulation bei CHA₂DS₂-VASc- Score > 1.................................87
6.5.3 Medikation bei älteren VHF- Patienten ..89
6.5.4 Guidelinekonforme Dosierung für den jeweiligen Patienten89
6.5.5 Gründe für die Nicht- Verordnung einer antikoagulativen Therapie90
7 Zusammenfassung ...91
8 Anhang ..93
9 Abkürzungsverzeichnis ...97
10 Literaturverzeichnis ..99
1 Einleitung

2 Herzrhythmusstörungen
2.1 Vorhofflimmern

VHF tritt in den Industrienationen des Westens bei 1,5-2 % der Gesamtbevölkerung auf, wobei etwa 120.000-180.000 Österreicher an VHF leiden. [vgl. Scherr et al. (2013)]

Es gibt epidemiologische Studien, welche eine exponentielle Zunahme zwischen dem Lebensalter und der Anzahl von VHF belegen. In den nächsten 30 Jahren wird sich die Anzahl von VHF vor allem in den Industrienationen verdoppeln. Grund hierfür ist die demographische Entwicklung. Ab dem 60. Lebensjahr tritt VHF bei 5 % aller Menschen auf. Hingegen macht die Inzidenz bei Menschen über 80 Jahren fast 20 % aus. [vgl. Goette et al. (2014)]

2.1.1 Definition

2.1.2 Ursache

2.1.3 Epidemiologie

Im Gegensatz zu jenen Patienten, die sich im Sinusrhythmus (8 %) befinden, liegt bei Schlaganfall-Patienten, die VHF in der Anamnese aufweisen, am 30. Tag eine signifikante Erhöhung der Mortalität vor. Zu diesem Ergebnis kam man durch das Oxfordshire-Community-Stroke-Project. [vgl. Sandercock et al. (1992)]

2.1.4 Pathophysiologie

Es wurde in pathophysiologischen Untersuchungen beobachtet, dass es durch VHF zur Anregung eines fortschreitenden elektrischen Prozesses kommt, weshalb sozusagen „VHF weiteres VHF“ bewirkt. Diese elektrophysiologischen Änderungen entstehen in den Zellen.

Atriales Remodeling:
Mechanismus von VHF:

VHF tritt auf, wenn es zu strukturellen und/oder elektrophysiologischen Veränderungen des Vorhofgewebes kommt, welche eine abnormale Erregungsbildung und/oder Vermehrung fördern. Diese Anomalien werden durch unterschiedliche pathophysiologische Mechanismen verursacht, sodass VHF einen endgültigen gemeinsamen Phänotyp für mehrere Krankheitswege präsentiert und auch durch Mechanismen, welche nicht vollständig verstanden werden. [vgl. January et al. (2014)] In der folgenden Abb. 2 wird der Mechanismus von VHF dargestellt:
2.1.5 Risikofaktoren

2.1.6 Symptome
2.1.7 Komorbiditäten

Eine Begünstigung für das Fortschreiten oder die Ursache für VHF stellen folgende Begleiterkrankungen dar:

- Bluthochdruck
- Herzkloppenerkrankungen
- Symptomatische Herzinsuffizienz (NYHA II-IV)
- Tachykardiomyopathie
- Kardiomyopathien, inkl. primär elektrischer Herzmuskelerkrankungen
- Vorhofseptumdefekte und andere angeborene Herzfehler
- KHK
- Manifste u. eventuell auch subklinische Schilddrüsen-Dysfunktion
- Übergewicht
- Diabetes mellitus
- Chronische Niereninsuffizienz
- Schlafapnoe
- Chronisch obstruktive Lungenkrankung (COPD)

Es ist wichtig, dass diese Begleiterkrankungen bei Vorliegen von VHF erfasst und adäquat behandelt werden. [vgl. Deutsche Gesellschaft für Kardiologie (2012)]

Mit VHF assoziierte Erkrankungen sind beispielsweise:

- Arterielle Hypertonie (bei > 70 % der VHF-Patienten)
- Herzkloppenerkrankungen (30 %)
- Herzinsuffizienz (30 %)
- Übergewicht (25 %)
- KHK (20 %)
- Behandelte Diabetes mellitus (20 %)
- COPD (10-15 %)
- Schlafapnoe (10 %)

Aufgrund steigender Anzahl an vaskulären Begleiterkrankungen kommt es zur Zunahme an permanentem VHF, im Gegensatz dazu wird die Anzahl an paroxysmalen VHF reduziert. [vgl. Röther (2011)]
2.1.8 Diagnose

2.1.9 Biomarker

2.1.10 Klassifikation
Jedoch stellt das nicht-rheumatische VHF die häufigste Rhythmusstörung des Herzens dar. Das Vorkommen dieser Form liegt bei Erwachsenen bei ca. 1% und steigt mit dem Alter an. In vergangenen Jahren spielte das rheumatische VHF als Ursache für die Entstehung von VHF eine wichtige Rolle. Diese Form des VHF wurde jedoch im Deutschen Kompetenznetz nur mehr bei 3,7% der VHF-Patienten festgestellt. [vgl. Röther (2011)]

VHF ist eine fortschreitende Erkrankung mit chronischem Verlauf. Die Klassifikation des VHF erfolgt lt. den ESC-Guidelines für das Management von VHF in 5 unterschiedlichen Typen:

1. Erstmals diagnostiziertes VHF
2. Paroxysmales VHF
3. Persistierendes VHF
4. Lang anhaltend persistierendes VHF
5. Permanentes VHF

Erstmals diagnostiziertes VHF:
Jene Patienten, die sich erstmals mit VHF-Beschwerden zum Arzt begeben, sind Patienten, bei denen VHF erstmals diagnostiziert werden kann. Jedoch haben hier die Dauer der Rhythmusstörung oder das Vorhandensein sowie die Schwere von Symptomen, welche mit VHF in Verbindung stehen, keinerlei Bedeutung.

Paroxysmales VHF:

Persistierendes VHF:
Persistierendes VHF liegt vor, wenn die VHF-Episode mehr als 7 Tage anhält oder mittels Kardioversion durch den Arzt beendet wird, egal ob mit elektrischer oder medikamentöser Kardioversion.

Langanhaltend persistierendes VHF:
[vgl. Deutsche Gesellschaft für Kardiologie (2012)]
Permanentes VHF:

2.1.11 Scores

2.1.11.1 EHRA-Score
Der EHRA-Score (European Heart Rhythm Association Score) steht für Symptome, die durch VHF verursacht werden. Die Bestimmung des EHRA-Symptom-Scores sollte in die klinische Untersuchung eingeschlossen werden. In der folgenden Tabelle ist die Klassifikation der Symptome ersichtlich:

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Schwere der Symptome</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHRA I</td>
<td>Keinerlei Symptome, asymptomatisches VHF</td>
</tr>
<tr>
<td>EHRA II</td>
<td>Leichte Symptome, keine Beeinträchtigung der Alltagstätigkeiten</td>
</tr>
<tr>
<td>EHRA III</td>
<td>Schwere Symptome mit Beeinträchtigung der Alltagstätigkeit</td>
</tr>
<tr>
<td>EHRA IV</td>
<td>Massive Symptome, Verhinderung der Alltagstätigkeiten</td>
</tr>
</tbody>
</table>

Tab. 1: Klassifikation von Symptomen, die mit VHF in Verbindung stehen [vgl. Kirchhof (2013)]
Aufgrund der mit Herzrhythmusstörung in Verbindung stehenden Symptome wird in den neuen Leitlinien der sogenannte EHRA- Score vorgeschlagen. [vgl. Kirchhoff et al. (2012)]

Der Vorschlag für den EHRA- Score stammt von der European Heart Rhythm Association, welche eine klinische Einteilung des VHF in Anlehnung an die NYHA- Klassifikation, die zur Einteilung der Herzinsuffizienz verwendet wird, vorgeschlagen hat. [vgl. Greten et al. (2010)]

2.1.11.2 CHA₂DS₂-VASc- Score
Der CHA₂DS₂-VASc- Score (= Congestion, Hypertension, Age, Diabetes, Stroke- Vascular disease, Age, Sex- category- Score) dient zur Abschätzung des Schlaganfall-/ Embolierisikos. [vgl. Winkle et al. (2014)] Dieser Score wird in der folgenden Tabelle dargestellt:

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>Anzahl der Punkte/ Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Herzinsuffizienz, LV- Dysfunktion</td>
</tr>
<tr>
<td>H</td>
<td>Hypertonie</td>
</tr>
<tr>
<td>A₂</td>
<td>Alter ≥ 75 Jahre</td>
</tr>
<tr>
<td>D</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>S₂</td>
<td>Schlaganfall/ TIA/ Thromboembolie in der Anamnese</td>
</tr>
<tr>
<td>V</td>
<td>Gefäßerkrankungen</td>
</tr>
<tr>
<td>A</td>
<td>Alter 65- 74 Jahre</td>
</tr>
<tr>
<td>S</td>
<td>Weibliches Geschlecht</td>
</tr>
</tbody>
</table>

Tab. 2: Abschätzung des Schlaganfall-/ Embolierisikos bei VHF- Patienten [vgl. Schlitt et al. (2013)]

Der CHA₂DS₂-VASc- Score wurde in vielen Kohortenstudien validiert und es zeigte sich, dass dieser Score besser bei der Identifizierung von sogenannten „low- risk“ Patienten ist, im Gegensatz zum CHADS₂- Score, welcher als Vorgänger des CHA₂DS₂-VASc- Scores verwendet wurde. [vgl. Potpara et al. (2012), Olesen et al. (2012), Van Staa et al. (2011)] Ein

2.1.11.3 HAS-BLED- Score

Der HAS-BLED- Score (= Hypertension Abnormal renal and liver function, Stroke- Bleeding tendency, Labile INR’s, Elderly, Drug- Score) dient zur Beurteilung des Blutungsrisikos des jeweiligen Patienten. [vgl. Deutsche Gesellschaft für Kardiologie (2012)] Im Laufe dieser Arbeit wird der Score noch genauer erläutert. In der folgenden Tabelle wird die Zusammensetzung des HAS-BLED- Scores ersichtlich:

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Klinische Variable</th>
<th>Anrechenbare Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Arterielle Hypertonie</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Abnormale Leber- und/ oder Nierenfunktion (je 1 Punkt)</td>
<td>1 oder 2</td>
</tr>
<tr>
<td>S</td>
<td>Schlaganfall</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Blutungsneigung oder -prädisposition</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Labile INR (falls VKA- Therapie)</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Alter (z.B. > 65 Jahre, Gebrechlich)</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Medikamente (ASS/ NSAR Komedikation) oder Alkoholabusus (je 1 Punkt)</td>
<td>1 oder 2</td>
</tr>
</tbody>
</table>

Tab. 3: Risikofaktoren zur Abschätzung des Blutungsrisikos [vgl. Senoo et al. (2014)]
2.2 Medikamentöse Therapie

Die allgemeinen Ziele für die Behandlung von VHF-Patienten sind folgende:

- Prophylaxe thromboembolischer Ereignisse
- Behandlung kardiovaskulärer Begleiterkrankungen
- Verbesserung der Symptome
- Regulierung der Herzfrequenz bei VHF oder Verbesserung des Herzrhythmus unter Erhaltung des Sinusrhythmus [vgl. Scherr et al. (2013)]

Bei der medikamentösen VHF-Therapie erfolgt die Einteilung in 2 verschiedene Behandlungsstrategien:

- Frequenzkontrolle (die Kammerfrequenz wird reguliert, wobei das VHF weiterhin bestehen bleibt)
- Rhythmuskontrolle (wird bei paroxysmalem oder persistierendem VHF angewendet, um den Sinusrhythmus wieder herzustellen oder diesen mittels entsprechender Maßnahmen zu erhalten.

Bei jedem Patienten muss eine individuelle Entscheidung bezüglich der Strategieauswahl erfolgen. Diese Entscheidung wird im Wesentlichen aufgrund zweier Determinanten getroffen: Einerseits auf der Wahrscheinlichkeit, dass der Sinusrhythmus (z.B. durch Kardioversion) mittelfristig wieder stabilisiert werden kann und andererseits aufgrund hämodynamischer Beeinträchtigung bzw. des Schweregrades der Symptomatik. [vgl. Lüderitz, Lewalter (2010)]

2.2.1 Frequenzregulierende Therapie

<table>
<thead>
<tr>
<th>Medikament</th>
<th>Typische Erhändigungsdosis</th>
<th>Warnhinweise</th>
<th>ERG-Warnzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodaron</td>
<td>200 mg 1-mal täglich</td>
<td>Vorsicht bei gleichzeitigen Einsatz von QT-verlängernden Medikamenten. Die Dosierung von Digoxin und Digitoxin sollte reduziert werden.</td>
<td>QT-Zeit > 500 ms</td>
</tr>
<tr>
<td>Dronedaron</td>
<td>400 mg 2-mal täglich</td>
<td>Nicht indiziert bei Herzinsuffizienz, bei gleichzeitiger Behandlung mit anderen QT-verlängernden Medikamenten, starken CYP3A4-Inhibitoren oder bei einer Kreatininwerte > 30 mg/dl. Die Dosierung von Digoxin und Digitoxin sollte reduziert werden.</td>
<td>QT-Zeit > 500 ms</td>
</tr>
<tr>
<td>Flecainid</td>
<td>100–200 mg 2-mal täglich</td>
<td>Nicht indiziert bei deutlich eingeschränkter Nierenfunktion (Kreatinin Clearance < 50 ml/min), bei koronarer Herzerkrankung oder reduzierter linksventrikulärer Ruhetoleranz. Vorsicht bei Vorliegen von Überleitungsstörungen.</td>
<td>QRS-Dauer nimmt unter Therapie zu</td>
</tr>
<tr>
<td>Propafenon</td>
<td>150–300 mg 3-mal täglich</td>
<td>Nicht indiziert bei Patienten mit koronarer Herzerkrankung oder reduzierter linksventrikulärer Ruhetoleranz. Vorsicht bei Vorliegen von Nierenfunktionsstörungen oder Überleitungsstörungen.</td>
<td>QRS-Dauer nimmt unter Therapie zu</td>
</tr>
<tr>
<td>d-β-Sotalol</td>
<td>80–160 mg 2-mal täglich</td>
<td>Nicht indiziert bei bedeutsamer linksventrikulärer Hypertrophie, systolischer Herzinsuffizienz, vorbestehender QT-Verlängerung Hypokaliämie oder eingeschränkter Nierenfunktion (Kreatinin Clearance < 50 ml/min). Eine leichte Einschränkung der Nierenfunktion erfordert eine sorgfältige Anpassung der Dosis.</td>
<td>QT-Zeit > 500 ms</td>
</tr>
</tbody>
</table>

Abb. 3: Antiarrhythmika zur SR-Erhaltung bei VHF-Patienten [vgl. Kirchhof (2013)]
Es gilt nicht als gesichert, aber es wird mit hoher Wahrscheinlichkeit angenommen, dass eine frequenzregulierende Behandlung zur Verhinderung von VHF-Komplikationen, vor allem aber einer Herzinsuffizienz beiträgt. Bis vor kurzem wurde noch eine sehr engmaschige Frequenzregulierung vorgeschlagen, welche die in Ruhe- Herzfrequenz auf < 80 Schläge/ min reduzieren sollte. Jedoch kam man durch neuere Daten zur Erkenntnis, dass eine etwas weniger strikte Frequenzregulierung, mit der Beabsichtigung die in Ruhe- Herzfrequenz auf < 110 Schläge/ min zu reduzieren, bei einem Großteil der Patienten mit weniger Komplikationen verläuft, jedoch aber ausreichend ist.

Bei VHF-Patienten kann auf der anderen Seite die Herzfrequenz jedoch auch verlangsamt ablaufen, somit kann der Einsatz eines Herzschrittmachers erfordert werden. Ganz selten gibt es auch Fälle wo es unmöglich ist eine kontinuierliche Frequenzregulierung zu gewährleisten, somit wird mittels Katheterablation die Zerstörung des AV-Knotens durchgeführt. In diesem Fall muss ein Herzschrittmacher eingesetzt werden, damit die Herzkammern funktionstüchtig bleiben. [vgl. Kirchhof (2013)]

2.2.2 Rhythmuserhaltende Therapie
Eine Rhythmuskontrolle mittels Antiarrhythmika wird dann als langfristiges Ziel angesteuert, wenn es via Frequenzkontrolle zu einer unzureichenden Linderung der Symptome gekommen ist oder bei stark beeinträchtigten Patienten. [vgl. Workman et al. (2011)]

Es gibt folgende Möglichkeiten eine rhythmuserhaltende Behandlung durchzuführen:

- Kardioversion
- Antiarrhythmika
- Katheterablation

2.2.2.1 Kardioversion
Bei der Kardioversion unterscheidet man die elektrische Kardioversion und die medikamentöse Kardioversion (Antiarrhythmika).

2.2.2.1 **Elektrische Kardioversion**

Zur Verwendung kommen sollten bei der elektrischen Kardioversion, sofern möglich, Elektroden in anteroposteriorischer Position, sowie der biphasische Defibrillator. Jedoch werden die Chancen eines möglichen Kardioversionserfolges gesteigert, indem vor der Kardioversion mittels Antiarrhythmikum vorbehandelt wird. [vgl. Scherr et al. (2013)]

2.2.2.2 **Antiarrhythmika**

Abb. 4: Auswahl eines geeigneten Antiarrhythmikums basierend auf der zugrundeliegenden kardialen Grunderkrankung [vgl. Scherr et al. (2013)]

Aufgrund der genannten Substanzen kommt es zu einer Hemmung diverser Ionenströme an der Zellmembran des Myokards, unter anderem die Inhibierung des Einstrom von Na⁺ und die verschiedenen K⁺- Ausströmungen. Dadurch kommt es zu einer Verlängerung des Aktionspotenzials, was wiederum VHF- Rezidive verhindert. VHF- Rezidive können aber auch ebenso durch unterschiedliche elektrophysiologische Mechanismen verhindert werden. Der Autor Kirchhof hat verschiedene Studien zusammengefasst und dabei zeigte sich, dass sich aufgrund der Behandlung von Dronedaron, Propafenon, Sotalol und Flecainid die Anzahl all jener Patienten, welche im Sinusrhythmus geblieben sind, verdoppelt hat. Amiodaron weist die beste Wirksamkeit im Vergleich zu den anderen Antiarrhythmika auf, jedoch treten hierbei auch des Öfteren Nebenwirkungen auf, weshalb es vor allem als Reservetherapeutikum verwendet wird, sofern die Möglichkeit zur Verwendung anderer Antiarrhythmika ausgeschöpft ist oder die Behandlung erfolgs geblieben ist. Werden jedoch diese Antiarrhythmika nicht ordnungsgemäß verwendet, kann es wiederum zu teilweise gefährlichen Herzrhythmusstörungen kommen. [vgl. Kirchhof et al. (2012), Apostolakis et al.

2.2.2 Katheterablation
Die Katheterablation bei VHF ist heute die Behandlung der Wahl bei arzneimittelresistenten, symptomatischen Patienten. Weltweit ist die Katheterablation das am häufigsten durchgeführte Ablationsverfahren. Für eine erfolgreiche Ablation bei paroxysmalem VHF ist eine Isolation der Pulmonalvenen bei den meisten Patienten ausreichend. Die Erfolgsrate liegt bei dieser Methode bei ca. 70 %, wobei bei einer Vielzahl an Patienten mehrere Eingriffe nötig sind um die Pulmonalvene zu isolieren. [vgl. Roten et al. (2012)]

2.3 Vorhofflattern
2.3.1 Definition
während des Vorhofflatters ist die Frequenz der Herzkammer. Aufgrund dessen muss diese Art der Herzrhythmusstörung unbedingt therapiert werden. [vgl. Erdmann (2013)]

2.3.2 Klassifikation
Man unterscheidet diverse Typen von Vorhofflattern:

- **Typisches Vorhofflattern**: kommt bei ca. 90 % der betroffenen Fälle vor und ist somit der meist vorkommende Typ des Vorhofflatters. Als typisches Merkmal dieser Form gelten sogenannte „sägezahnförmige Flatterwellen“.
- **Reverses typisches Vorhofflattern**: kommt nur bei ca. 10 % der betroffenen Fälle vor.
- **Atypisches Vorhofflattern**: ist die seltenste Form des Vorhofflatters und tritt zumeist als Konsequenz einer Ablation unter VHF auf.

Genauso wie bei VHF besteht auch bei Vorhofflattern die Möglichkeit eines chronischen oder anfallartigen Ereignisses. Jedoch tritt Vorhofflattern im Vergleich zu VHF seltener auf.

2.3.3 Ursachen
Vorhofflattern ist zumeist idiopathisch. Weitere Ursachen können sein: Lungenerkrankungen, Peri-/ Myokarditis oder Hyperthyreose, KHK, Fehler der Trikuspidal-/ Mitralklappe, Defekt des Vorhofseptums oder Kardiomyopathie.

2.3.4 Pathophysiologie

2.3.5 Therapie
Mittels medikamentöser Behandlung erreicht man bei Vorhofflattern meist nur eine Reduktion der Vorhoffrequenz. Problematisch dabei ist, dass dadurch auf die Ventrikel eine 1:1- AV-Überleitung entstehen kann. Aufgrund dessen sollte eine antiarrhythmische Behandlung sowohl bei Vorhofflimmern als auch bei Vorhofflattern mittels frequenzregulierender

3 Antikoagulation

3.1 Geschichte der Antikoagulantien

Zur besseren Verständlichkeit des Wirkmechanismus von Antikoagulantien werden folgend die Blutgerinnung, die Blutstillung sowie auch die Gerinnungsparameter kurz erklärt.

3.2 Blutstillung, Blutgerinnung

3.2.1 Primäre Hämostase

Eine Aktivierung der Thrombozytenfunktionen sowie der Vasokonstriktion findet nach Gefäßverletzungen statt. Diese 2 Mechanismen sind Bestandteile der primären Hämostase.

3.2.2 Sekundäre Hämostase

Aktivierungsreaktionen können nur durchgeführt werden, vorausgesetzt, dass oberflächengebundene Komplexe von Kofaktoren und Serinproteasen gebildet werden, welche jedoch Ca2+ abhängig sind. Das Produkt, welches bei der Gerinnung am Ende entsteht, ist ein Fibrin-Netzwerk. Dieses Netzwerk ist verantwortlich für die mechanische Haltbarkeit des Thrombus, der gebildet wurde. [vgl. Speckmann et al. (2013)]

Bei der sekundären Hämostase wird in folgende Phasen unterteilt:

- Startphase,
- Verstärkungsphase
- Verschluss-/Produktionsphase

3.2.2.1 Startphase

3.2.2.2 Verstärkungsphase

Durch Faktor Xa entsteht nun erstmal aus Prothrombin der Faktor IIa (Thrombin). Da der Effekt von TF/ VIIa nur für kurze Zeit andauert, weil es mittels TFPI (endothelialen Tissue Factor Pathway Inhibitor) zur Blockade dieses Komplexes kommt, ist die Fortsetzung der Gerinnungskaskade wesentlich von der Faktor VIII u. Faktor V- Aktivierung abhängig. Ebenso ist es in einem geringeren Ausmaß auch von der Faktor XI und IX- Aktivierung abhängig und vom bereits gebildeten Thrombin. Zu einer drastischen Erhöhung der Faktor Xa bzw. Faktor IXa- Aktivität kommt es aufgrund der Kofaktoren Va u. VIIIa. Dadurch bilden sich membranassozierte Enzymkomplexe, welche sich jedoch in Abhängigkeit von Ca2+
entwickeln. Erst durch diese positive Rückkopplung kann eine ausreichende und dauerhafte Thrombinbildung gewährleistet werden. Je ausgeprägter eine positive Rückkopplung ist, desto größer ist die Konzentration an Thrombin und desto höher ist auch die Festigkeit des sich bildenden Gerinnsels.

3.2.2.3 Verschlussphase/Produktionsphase

Folgende dieser Hemmmechanismen sind hier von besonderer Bedeutsamkeit:

- Tissue Factor Pathway Inhibitor (TFPI)
- Thrombomodulin und Protein C
- Antithrombin
In der folgenden Abbildung 5 wird die Blutgerinnungskaskade dargestellt:

Abb. 5: Verlauf der Blutgerinnung sowie der Fibrinolyse [vgl. Mutschler et al. (2013)]

Nachkommend werden pharmakologisch verwendete Gerinnungshemmer aufgelistet:

- Heparine sind für eine ca. 1000-fache Erhöhung der im Plasma vorkommenden Antithrombin-Wirkung verantwortlich.
- Hirudin blockiert direkt die enzymatische Wirkung des Thrombins.
- Cumarin-Derivate sind VKA und hemmen in der Leber die γ-Carboxylierung.
- Direkte Hemmstoffe wie der Faktor IIa-Hemmer (Dabigatran) und Faktor Xa-Hemmer (Rivaroxaban, usw.). [vgl. Speckmann et al. (2013)]
3.2.3 Gerinnungsparameter

3.2.3.1 Blutungszeit

3.2.3.2 Gerinnungszeit

3.2.3.3 Thromboplastinzeit (= Prothrombinzeit)

3.2.3.4 Quick- Wert

Bei ca. 13 Sek. befindet sich der Normwert. Die Bezugsgröße für die Thromboplastinzeit ist das Standardplasma. Sofern die Thromboplastinzeit verlängert ist, sollte eine Verdünnung des Standardplasmas erfolgen. Dieses Standardplasma sollte solange verdünnt werden, bis die
Gerinnungszeit des Standardplasmas mit der Gerinnungszeit des zu prüfenden Plasmas übereinstimmt. Als Quick-Wert wird nun das Ausmaß der jeweiligen Verdünnung angegeben (z.B. 80 %). Umso höher also die Thromboplastinzeit d.h. je langsamer die Blutgerinnung, desto mehr sinkt der Quick-Wert. Quick-Werte bis zu 70 % liegen somit im Normalbereich.

3.2.3.5 INR (= International Normalized Ratio)

3.2.3.6 Partielle Thromboplastinzeit (= PTT)

3.2.3.7 Thrombinzeit (= TT)
3.3 Medikamentöse Therapie

Abb. 6: Angriffspunkte der Antikoagulantien in der Gerinnungskaskade [vgl. Hahn, Hach-Wunderle (2012)]
Im Vordergrund steht die Identifikation von VHF-Patienten, die < 65 Jahre sind, keine strukturelle Herzerkrankung (sogenanntes „lone atrial fibrillation“) aufweisen, bzw. welche einen CHA₂DS₂-VASc-Score von 0 erlangen und unabhängig vom Geschlecht ein „wirklich niedriges Risiko“ darstellen. Bei Patienten mit einem „wirklich niedrigem Risiko“ ist keine antithrombotische Behandlung erforderlich. In Abb. 7 wird das Auswahlverfahren für die antikoagulative Therapie von VHF-Patienten laut den ESC Guidelines dargestellt:

Abb. 7: Auswahl der Antikoagulationstherapie [vgl. Camm et al. (2012)]
Eine orale Antikoagulation sollte bei allen VHF-Patienten erwogen werden, die einen oder mehrere Risikofaktoren besitzen, um eine effektive Schlaganfallprophylaxe zu gewährleisten, d.h. ab einem CHA$_2$DS$_2$-VASc-Score von 1 sollte nach einer Blutungsrisiko-Abschätzung und unter Berücksichtigung von patientenindividuellen Faktoren eine OAK in Betracht gezogen werden, mit Ausnahme all jener Patienten (weiblich und männlich), welche ein niedriges Risiko (Alter < 65 Jahre, „lone atrial fibrillation“) aufweisen oder bei denen eine OAK kontraindiziert wäre. [vgl. Camm et al. (2012)] Zum Ergebnis, dass das Risiko für einen ischämischen Schlaganfall bei VHF-Patienten mit einem CHA$_2$DS$_2$-VASc-Score von 1 niedriger ist und somit keine Antikoagulation benötigt wird, kamen hingegen schwedische Forscher. [vgl. Friberg et al. (2015)] Ein positiver Nettoeffekt wird durch eine verordnete OAK-Therapie ab einem CHA$_2$DS$_2$-VASc-Score \geq 2 zweifellos erzielt. Die orale Antikoagulation erfolgt dann mittels VKA unter der Voraussetzung, dass eine gute INR-Einstellung angestrebt wird, welche im Bereich 2-3 vorherrscht, oder durch die Verabreichung von DOAK. Zur Abschätzung des Schlaganfallrisikos bei VHF dient der bereits erklärte CHA$_2$DS$_2$-VASc-Score. Unabhängig der jeweiligen VHF-Art (Bsp. persistierend, paroxysmal oder permanent persistierend) sollte die Auswahl einer antithrombotischen Behandlung durchgeführt werden. Wenn eine Beurteilung des Schlaganfallrisikos durchgeführt wird, sollte ebenso auch das Blutungsrisiko bewertet werden mittels HAS-BLED-Score. Ein hohes Blutungsrisiko wird bei einem HAS-BLED-Score von \geq 3 angezeigt. Patienten, die einen hohen HAS-BLED-Score aufweisen, sollten jedoch nicht von einer indizierten Antikoagulationstherapie ausgeschlossen werden. Bei diesen Personen ist Vorsicht geboten und deshalb sollte die Initiierung einer Antikoagulationstherapie regelmäßig überprüft werden. Generell sollte während einer antithrombotischen Therapie der CHA$_2$DS$_2$-VASc-Score sowie der HAS-BLED-Score in regelmäßigen Abständen überprüft werden.

3.4 DOAK

- Direkte Thrombin-Inhibitoren (Dabigatran)
- Direkte Faktor Xa-Inhibitoren (Rivaroxaban, Apixaban, Edoxaban)

genannten Studien bilden die größten prospektiven VKA- kontrollierten Studien der Antikoagulation bezüglich der Schlaganfallprophylaxe bei VHF- Patienten. [vgl. Ru San (2012)]

3.4.1 Antidot, Gerinnungstests
Es gibt Arzneimittel, welche eine Umkehrung des gerinnungshemmenden Effektes bewirken. Zur Umkehrung der antikoagulativen Wirkung von Heparin, Heparin- Derivaten sowie auch von Warfarin können Protamin, frisch gefrorenes Plasma, Faktor-III und Faktor- IV-Prothrombinkomplexkonzentrate erfolgreich eingesetzt werden. Im Gegensatz dazu gibt es bei den DOAK keinerlei Arzneimittel spezifische Antidots, welche eine schnelle Umkehrung des gerinnungshemmenden Effektes bzw. einer Blutstillung bewirken würden. Im Vergleich zu VKA haben DOAK eine kurze HWZ (5-17 h), dadurch kommt es zu einer schnellen Reduktion der gerinnungshemmenden Wirkung. [vgl. Yang (2014)]

3.4.2 Umstellung auf DOAK
Generell sollte eine Umstellung auf DOAK in Betracht gezogen werden, wenn der Patient eine VKA- Unverträglichkeit aufweist oder mangelhaft auf VKA eingestellt ist. Wenn die mangelhafte VKA- Einstellung jedoch auf ein Compliance- Problem zurückzuführen ist, sollte der Patient nicht auf DOAK umgestellt werden, da dieses Problem durch die kurze Halbwertszeit der DOAK zu einer Verschärfung der Situation führen kann. Wenn Wechselwirkungen zwischen VKA und anderen Medikamenten auftreten, kann dies ein weiterer Grund für eine Umstellung auf DOAK sein. Jedoch sollte immer das Nutzen-/ Risiko- Verhältnis abgewogen werden, weil DOAK außerhalb kontrollierter Studien nur limitierte Erfahrungen aufweisen. Wenn eine Umstellung von DOAK auf VKA stattfindet, kann nach der Absetzung des DOAK keine zuverlässige INR- Bestimmung durchgeführt werden und deshalb wäre in diesem Fall ein NMH- Bridging sehr sinnvoll. Wenn jedoch eine Therapie mit VKA auf ein DOAK umgestellt wird, sollte beachtet werden, dass die INR < 2 eingestellt ist. [vgl. Hahn, Hach- Wunderle (2012)]
3.4.3 Dabigatranetexilat

Abb. 8: Strukturformel von Dabigatran etexilat [vgl. chemBlink 2015]

3.4.3.1 Anwendungsgebiete, Dosierung

3.4.3.2 Gegenanzeichen, Kontraindikation

3.4.3.3 Pharmakodynamik, Pharmakokinetik
die Schlüsselposition des Thrombins in der menschlichen Blutgerinnung und verhindert dadurch die Entstehung eines Thrombus. [vgl. Redondo et al. (2011)]

3.4.3.4 Blutungsrisiko

3.4.3.5 Antidot, Gerinnungstests
Dabigatran-sensitive Gerinnungstests:
Vor bevorstehenden Operationen sollte mittels Gerinnungstest eine Überprüfung der Gerinnung durchgeführt werden, um eine restliche Gerinnungshemmung durch Dabigatran festzustellen. Prinzipiell kann diese Information aufgrund der adaptierten Thrombinzeit (z.B. Hemoclot® Test) oder mittels der Ecarin-Gerinnungszeit (ECT) eingeholt werden. [vgl. Fries et al. (2013)]

3.4.4 Apixaban

![Chemische Struktur von Apixaban](image)

Abb. 9: Chemische Struktur von Apixaban [vgl. Budovich et al. (2013)]

3.4.4.1 Anwendungsgebiete, Dosierung
(LE) und tiefer Venenthrombose (TVT) sowie der prophylaktische Einsatz von möglicherweise wiederauftretenden LE- und TVT- Rezidiven bei Erwachsenen. Die laut Herstellern empfohlene Dosierung zur Prävention von systemischen Embolien u. Apoplexie bei erwachsenen Patienten mit nicht-valvulärem VHF beträgt 2x 5 mg Apixaban täglich. Eine Dosisreduktion auf 2x 2,5 mg Apixaban täglich ist erforderlich, wenn min. 2 der folgenden Faktoren vorliegen: Patienten ≥ 80 Jahre, wenn das Körpergewicht des Patienten ≤ 60 kg beträgt oder bei Vorliegen eines Serumkreatinin- Wertes ≥ 1,5 mg/ dl. Des Weiteren sollte auch bei nicht-valvulärem VHF-Patienten mit stark eingeschränkter Nierenfunktion (CrCl 15-29 ml/ min) eine Dosisanpassung auf 2x 2,5 mg Apixaban tgl. erfolgen. [vgl. Eliquis® Fachinformation (2014)]

3.4.4.2 Gegenanzeigen, Kontraindikation

3.4.4.3 Pharmakodynamik, Pharmakokinetik
Apixaban ist ein direkter Faktor Xa-Inhibitor welcher seine antikoagulative Wirkung durch die direkte und selektive Hemmung von freiem und gebundenem Faktor Xa entfaltet. Eine Inhibierung des Faktor Xa führt zu einer verminderten Umwandlung von Faktor II zu Faktor IIa und somit zu einer reduzierten Thrombinbildung. Der Beginn der antikoagulativen Wirkung setzt bei einer Einzeldosis von Apixaban nach 1-3 h ein. Apixaban wird im Magen und im Dünndarm aufgenommen, wobei die absolute Bioverfügbarkeit 50 % entspricht. Die

3.4.4.4 Blutungsrisiko

das Blutungsrisiko genauso erhöhen kann. Auch bei Patienten, welche ein Körpergewicht von \(\leq 60 \) kg aufweisen, kann durch Apixaban das Blutungsrisiko erhöht werden. [vgl. Eliquis® Fachinformation (2014)]

3.4.4.5 Antidot, Gerinnungstests
Der Wirkstoff Apixaban bedarf keiner routinemäßigen Überwachung, jedoch kann sich in gefährlichen Situationen (z.B. Notfall- OP) ein quantitativer Anti- Faktor- Xa- Test als besonders hilfreich erweisen. Apixaban beeinflusst aufgrund seines Wirkmechanismus die Gerinnungstests wie beispielsweise INR, PT, sowie aPTT, diese werden durch den genannten Wirkstoff verlängert. Deshalb verwendet man den Anti- FXa- Test, welcher die durch Apixaban reduzierte Enzymaktivität des Faktor- Xa nachweist. Die Apixaban-Plasmakonzentration und die Anti- FXa- Aktivität befinden sich zueinander in einem linearen, direkten Verhältnis, d.h. bei einer max. Konzentration an Apixaban erreicht auch die Anti- FXa- Aktivität ihren Höhepunkt. [vgl. Eliquis® Fachinformation (2014)]

3.4.5 Rivaroxaban

[![Chemische Struktur von Rivaroxaban](image)]

Abb. 10: Chemische Struktur von Rivaroxaban [vgl. Abdulsattar et al. (2009)]

Rivaroxaban ist ein direkter, selektiver und reversibler Inhibitor des freien und gebundenen Faktor Xa, jedoch bindet dieser nicht an Antithrombin. [vgl. Abdulsattar et al. (2009)] Der Wirkstoff Rivaroxaban wird in den Dosierungen 2,5 mg, 10 mg, 15 mg, sowie 20 mg am Markt unter dem Präpart- Namen Xarelto® angeboten und wird in Abb. 10 dargestellt. [vgl. Xarelto® Fachinformation (2013)]
3.4.5.1 Anwendungsgebiete, Dosierung
Rivaroxaban wird zur Prophylaxe systemischer Embolien und bei Schlaganfällen von nicht-valvulären, erwachsenen VHF-Patienten eingesetzt, welche einen oder mehrere der folgenden Kriterien aufweisen: Patienten > 75 Jahre, Herzinsuffizienz, Diabetes mellitus, Bluthochdruck, oder bereits stattgefunden der Schlaganfall oder TIA. Weitere Einsatzgebiete von Rivaroxaban sind die Therapie von Lungenembolien und tiefen Venenthrombosen sowie auch die Prävention möglicherweise wiederkehrender Lungenembolien und tiefen Venenthrombosen bei erwachsenen Patienten. Zur Prophylaxe von systemischen Embolien und Schlaganfällen wird lt. Hersteller eine Dosierung von 1x 20 mg Rivaroxaban tgl. empfohlen. Hingegen wird eine Dosisreduktion auf 1x 15 mg Rivaroxaban tgl. bei VHF-Patienten mit mittlerer (CrCl 30-49 ml/ min) sowie auch bei starker Nierenfunktionsstörung (CrCl 15- 29 ml/ min) empfohlen. Wenn bei Patienten eine CrCl < 15 ml/ min vorliegt, sollte auf den Einsatz von Rivaroxaban verzichtet werden. Xarelto® 2,5 mg wird hingegen präventiv bei atherothrombotischen Vorkommnissen nach einem ACS bei gesteigerten kardialen Biomarkern verwendet, jedoch wird es in Kombination mit ASS oder in Kombination mit ASS und Clopidogrel/ Ticlopidin eingenommen. In der Dosierung von 10 mg wird Rivaroxaban jedoch zur Prävention von venösen Thromboembolien bei jenen Patienten eingesetzt, welche sich zuvor einer Kniegelenks-/ Hüftgelenksoperation unterzogen haben. [vgl. Xarelto® Fachinformation (2013)]

3.4.5.2 Gegenanzeigen, Kontraindikation
3.4.5.3 Pharmakodynamik, Pharmakokinetik

3.4.5.4 Blutungsrisko

3.4.5.5 Antidot, Gerinnungstests
quantifiziert werden, da diese Messung stark reagenzienabhängig ist und die Sensitivität für mittlere- tiefe Konzentrationen des Rivaroxaban zu gering ist. [vgl. Wuillemin et al. (2012)]

3.5 VKA

3.5.1 Vitamin K

Zur besseren Verständlichkeit wird der Aufgabenbereich von Vitamin K im Gerinnungssystem kurz erklärt.

3.5.2 Phenprocoumon, Acenocoumarol

3.5.2.1 Anwendungsgebiete, Dosierung

3.5.2.2 Gegenanzeigen, Kontraindikation

3.5.2.3 Pharmakodynamik, Pharmakokinetik

3.5.2.4 Blutungsrisiko
Blutungen sind eine der am häufigsten auftretenden Nebenwirkungen bei der Therapie mit Antikoagulanzen. Die Blutungen treten an unterschiedlichen Körperstellen auf und stehen in Abhängigkeit mit der Dosierung des Antikoagulans, dem Alter des jeweiligen Patienten, sowie auch mit dessen Grunderkrankung in Zusammenhang. Jedoch spielt die Behandlungsdauer

3.5.2.5 Antidot, Gerinnungstests
Eine Umkehrung der antikoagulativen Wirkung der Cumarine kann mittels Vitamin K₁ (Phytomenadion) bewerkstelligt werden. Jedoch muss beachtet werden, dass der Wirkungseintritt erst verzögert (binnen 24- 48 h) einsetzt. Für eine sofortige Beendigung der Cumarinwirksamkeit ist eine Frischplasma- Transfusion notwendig. [vgl. Voigt et al. (2014)]
Weitere Möglichkeiten zur Umkehr der Antikoagulation sind die Behandlung mit einem Prothrombinkomplexkonzentrat oder auch mit einem rekombinanten Faktor VIIa. Der Gerinnungsstatus jener Patienten, welche mit VKA behandelt werden, wird mittels der Prothrombinzeit bestimmt. Um aber eine Vergleichbarkeit unterschiedlicher Labore zu erzielen, wird der INR verwendet, welcher ein Maß für die Empfindlichkeit des Thromboplastin- Reagens ist. [vgl. Lauer et al. (2013)]

3.6 Heparine
Heparine sind Mukopolysaccharide, welche linear und polysulfatiert vorliegen. Das mittelmäßige Molekulargewicht befindet sich bei ca. 12.000 Da. Heparine werden folgend klassifiziert:

- Unfraktioniertes Heparin (Molekulargewicht ca. 6.000- 30.000 Da)
- Niedermolekuulares Heparin (Molekulargewicht ca. 1.200- 10.000 Da)
- Heparinoide

Die Gemeinsamkeit dieser Heparine besteht darin, dass alle diese Vertreter die Blutgerinnung hemmen. [vgl. Frölich, Kirch (2013)]

Bei dieser Diplomarbeit wird das Hauptaugenmerk im Bereich der Heparine vor allem auf die NMH und hier besonders auf die Wirkstoffe Enoxaparin (Lovenox®) und Dalteparin (Fragmin®) gelegt, da diese beiden Vertreter die gängigsten Wirkstoffe waren, welche im LKH Villach verabreicht wurden, bzw. welche den Patienten schon vor ihrer stationären
Aufnahme verschrieben wurden. Somit werden diese beiden Wirkstoffe etwas genauer behandelt.

3.6.1.1 Anwendungsgebiete, Dosierung

3.6.1.2 Gegenanzeigen, Kontraindikation

3.6.1.3 Pharmakodynamik, Pharmakokinetik
Aufgrund des enormen Molekulargewichts sowie der negativen Ladung müssen Heparine subkutan oder i. v. appliziert werden. Die Bioverfügbarkeit nach subkutaner Applikation befindet sich bei NMH beinahe bei 100 % im Gegensatz zu einer 30%igen Bioverfügbarkeit bei UFH. NMH weisen eine Eliminationshalbwertszeit von 3-4 h auf. Die Elimination von NMH findet über das renale System statt. [vgl. Luippold (2012)] NMH sind starke Inhibitoren des Faktor Xa, jedoch fällt die Thrombin- Hemmung deutlich schwächer aus im Vergleich zum Standardheparin.

Der Abbau von NMH durch Desulfatisierung und mittels Depolymerisation findet vorwiegend in der Leber statt. Ein kleiner Anteil von ca. 10 % wird unverändert über das renale System ausgeschieden. Ebenso wird auch ein Anteil von etwa 30 % in minimal veränderter Form über die Nieren ausgeschieden. [vgl. Lovenox®/- Fragmin® Fachinformation (2014)]

3.6.1.4 Blutungsrisiko

3.6.1.5 Antidot, Gerinnungstests
NMH weisen eine längere HWZ auf verglichen mit UFH. Vorteilhaft ist auch die dosisbezogene Wirkung von NMH sowie eine bessere Vorhersehbarkeit, sofern das Präparat in der definierten Dosierung verabreicht wird ist eine Laborüberwachung nicht nötig. [vgl.
Die Heparin-Behandlung kann aber mittels Anti- Faktor-Xa- Test überwacht werden. Dieser Test kann sowohl zur Bestimmung von NMH, UFH als auch zur Untersuchung von Heparinen, welche chemisch modifiziert wurden (Heparinoide) angewendet werden. Auch mittels Heptest® kann die gerinnungshemmende Wirkung des Heparins festgestellt werden. Von diversen anderen Probenbestandteilen, wie beispielsweise den Gehalt an Fibrinogen, Faktor V sowie Faktor II, kann das Ergebnis dieses Tests jedoch beeinflusst werden. [vgl. Bruhn et al. (2011)]

3.7 Interaktionen

3.8 Dosierungsempfehlungen von DOAK lt. Guidelines

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran</th>
<th>Apixaban</th>
<th>Rivaroxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standarddosierung (SD)</td>
<td>2x 150 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 20 mg tgl.</td>
</tr>
<tr>
<td>Dosisreduktion (DR)</td>
<td>2x 110 mg tgl.</td>
<td>2x 2,5 mg tgl.</td>
<td>1x 15 mg tgl.</td>
</tr>
<tr>
<td>GFR ≥ 50 ml/min</td>
<td>2x 150 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 20 mg tgl.</td>
</tr>
<tr>
<td>GFR 30-49 ml/min</td>
<td>2x 110 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 15 mg tgl.</td>
</tr>
<tr>
<td>GFR 15-29 ml/min</td>
<td>KI</td>
<td>KI</td>
<td>KI</td>
</tr>
<tr>
<td>GFR ≤ 15 ml/min</td>
<td>KI</td>
<td>KI</td>
<td>KI</td>
</tr>
<tr>
<td>Alter ≥ 80 Jahre</td>
<td>2x 110 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 20 mg tgl.</td>
</tr>
<tr>
<td>HAS-BLED- Score ≥ 3</td>
<td>2x 110 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 15 mg tgl.</td>
</tr>
<tr>
<td>Gewicht < 60 kg</td>
<td>2x 150 mg tgl.</td>
<td>2x 5 mg tgl.</td>
<td>1x 20 mg tgl.</td>
</tr>
</tbody>
</table>

KI...Kontraindikation

Tab. 4: Dosierungsempfehlung der DOAK nach den Guidelines [vgl. Camm et al. (2012), January et al. (2014)]

Generell wird in den ESC Guidelines für das Management von VHF bei einer GFR ≤ 30 ml/min die Anwendung von DOAK nicht mehr empfohlen. In der folgenden Tab. 5 wird eine Übersicht der unterschiedlichen Dosierungen von OAK nach deren Einsatzgebiet dargestellt.
3.9 Dosierungsumsicht der OAK nach Indikation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pradaxa® 75 mg</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Pradaxa® 110 mg</td>
<td>ja</td>
<td>ja¹</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Pradaxa® 150 mg</td>
<td>nein</td>
<td>ja¹</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Eliquis® 2,5 mg</td>
<td>ja</td>
<td>ja¹</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Eliquis® 5 mg</td>
<td>nein</td>
<td>ja¹</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Xarelto® 2,5 mg</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>ja²</td>
</tr>
<tr>
<td>Xarelto® 10 mg</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>Xarelto® 15 mg</td>
<td>nein</td>
<td>ja¹</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Xarelto® 20 mg</td>
<td>nein</td>
<td>ja¹</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Marcoumar®</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Sintrom®</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
</tbody>
</table>

¹ Anwendung beim Vorliegen ein/ mehrerer Risikofaktoren wie: Schlaganfall in Anamnese, TIA, Herzinsuffizienz (NYHA ≥ 2), Alter ≥ 75 Jahre, Diabetes mellitus, Hypertonie

² Einnahme in Kombination mit ASS oder in Kombination mit ASS und Clopidogrel/ Ticlopidin

Tab. 5: Dosierungsumsicht der OAK nach Indikation [vgl. Pradaxa®-/ Eliquis®-/ Marcoumar®-/ Sintrom® Fachinformation (2014), Xarelto® Fachinformation (2013)]
3.10 DOAK vs. VKA

All diese Medikamente haben eine hohe renale Exkretion, vor allem aber Dabigatran. Somit ist die Beurteilung der Nierenfunktion obligatorisch für alle DOAK, aber speziell für Patienten unter Dabigatran. Die Nierenfunktion sollte bei Patienten mit normaler Kreatinin-Clearance (CrCl > 80 ml/min) sowie auch bei leicht eingeschränkter Nierenfunktion (CrCl 50-79 ml/min) jährlich bestimmt werden und eventuell 2-3x jährlich bei Patienten mit mittelschwerer Nierenfunktionsstörung (CrCl 30-49 ml/min). Dabigatran könnte auch der Grund für Verdauungsstörungen sein, welche eventuell durch Einnahme mit der Nahrung oder durch eventuelle Gabe eines Protonenpumpenhemmers verbessert werden könnten. Im Gegensatz zu den VKA (INR-Bestimmungen) benötigen die DOAK keine Dosisanpassung auf Basis von spezifischen Gerinnungstests.

einen positiven klinischen Nutzen. Alle 3 DOAK (Dabigatran, Apixaban, Rivaroxaban) waren bei Patienten mit einem CHA₂DS₂-VASc-Score von 2 Warfarin überlegen, sowohl mit einem positiven klinischen Nutzen als auch in der Unabhängigkeit des Blutungsrisikos. Die Compliance und Einhaltung der Therapie ist von entscheidender Bedeutung, vor allem weil diese Medikamente eine relativ kurze HWZ besitzen, sodass kein antikoagulatorischer Schutz gewährleistet werden kann wenn mehr als eine Dosis verabreicht wird.
3.11 Kosten
Als Goldstandard- Therapie zur Prävention von thromboembolischen Ereignissen wurden VKA dargestellt. Im Jahr 2013 hat in Deutschland VKA den niedrigsten durchschnittlichen Preis für eine definierte Tagesdosis erreicht, welcher sich pro Tag auf 0,20 € für Phenprocoumon, 3,43 € für Apixaban und 3,28 € für Dabigatran sowie auch für Rivaroxaban beläuft. In einer langfristigen Untersuchung eines 30-Jahre – Modells wurde herausgefunden, dass durch eine Therapie mit Warfarin die Kosten am geringsten sind, gefolgt von Rivaroxaban 20 mg, dann Dabigatran 150 mg und zuletzt Apixaban 5 mg. Voraussetzung dieser Studie war, dass die Patienten folgende Kriterien erfüllen: 70 jähriger VHF- Patient, welcher ein erhöhtes Schlaganfallrisiko besitzt, sowie eine CrCl > 50 ml/ min und keine Kontraindikation für die Antikoagulationstherapie aufweist. [vgl. Mani, Lindhoff- Last (2014)]
4 Ziel der Arbeit

1. Welche oralen Antikoagulantien werden bei den Patienten angewendet?
 • In welcher Dosierung werden die Antikoagulantien verabreicht?
 • Entspricht die Dosierung den Guidelines?
 • Erhält der Patient die jeweiligen Präparate die lt. ESC- Guideline indiziert sind?

2. Wurden die vorgeschriebenen Scores bestimmt?
 • Erfolgte die Bestimmung des CHA_{2}DS_{2}-VASC- Score? Wieviel ist er?
 • Erfolgte die Bestimmung des HAS-BLED- Score? Wieviel ist er?
 • Wurde der EHRA- Score bestimmt?
3. Was sind Gründe für den Verzicht einer Antikoagulation trotz Indikation?
 • Wie viele Patienten lehnten eine Antikoagulation ab?
 • Bei wie vielen Patienten ist eine Antikoagulation kontraindiziert? (aufgrund Blutungsrisiko/ Sturzgefahr?)

4. Welche Interaktionen können bei den jeweilig verordneten Medikamenten auftreten?
 • Welche Wechselwirkungen treten häufig auf?
 • Wird dadurch das Blutungsrisiko erhöht?

5. Wurde der Patient auf ein anderes Antikoagulans umgestellt?
 • Wurde der Patient während des KH-Aufenthalts auf ein anderes Antikoagulans umgestellt?
 • Wurde der Patient schon einmal (ab 2011) auf ein anderes Antikoagulans umgestellt?
 • Was sind Gründe für eine Umstellung auf ein anderes Antikoagulans?

 • Welches Antikoagulans wurde während dieses Zeitraums am häufigsten verschrieben?
 • Welches Antikoagulans wurde generell am häufigsten verordnet?

5 Methodik

5.1 Literaturrecherche

5.2 Erstellung eines Datenerhebungsblattes

5.3 Pretest
Um die praktische Verwendbarkeit und Auswertbarkeit des Datenerhebungsblattes zu überprüfen, wurde eine Pilotphase mit wenigen Patienten durchgeführt. Anschließend wurden einige Korrekturen des Datenerhebungsblattes vorgenommen, bevor mit der Datenerhebung gestartet werden konnte.

5.4 Datenerhebung

5.4.1 Einschlusskriterien
In die Datenauswertung wurden folgende Patienten miteinbezogen:

- VHF-Patienten
- stationäre Aufnahme innerhalb des Zeitraums von 1.- 30. 11. 2014 im LKH Villach
- VHF-Patienten > 40 Jahre
- alle Patienten, die in PATIDOK mittels ICD- 10 Code „I48“ für VHF erfasst wurden
5.4.2 Ausschlusskriterien

Aufgrund organisatorischer Einschränkungen waren 50 Patienten für eine Erhebung mittels Datenerhebungsblatt nicht verfügbar:

- ambulante Patienten
- Erfassung der Patienten über PATIDOK, jedoch nicht vollständig über die elektronische Patientenkurve MedCaSol (fehlende Informationen bezüglich Krankheit und Therapie)
- durch den kurzen Aufenthalt wurden die Patienten erst nach der Entlassung in PATIDOK gefunden

Weitere Ausschlusskriterien stellten folgende Patienten dar:

- verstorben Patienten
- während des Erhebungszeitraums mehrfach aufgenommene Patienten
- Schwangere, Stillende
- Kinder
- Leistungssportler
- Patienten < 40 Jahre

Von den insgesamt 276 mittels Diagnosecode ermittelten Patienten sind am Ende 203 Patienten für eine Auswertung in Frage gekommen, wobei diese 203 Patienten nochmals unterteilt wurden, in einerseits bereits antikoagulierte Patienten (133 Personen) und andererseits Patienten die zum Aufnahmezeitpunkt im KH nicht antikoaguliert wurden (70 Personen).

5.5 Auswertung der Daten

6 Ergebnisse und Diskussion

6.1 Allgemeines zum Patientenkollektiv

Abb. 14: Aufteilung des Patienten klientels
Von den 203 betrachteten Patienten mit VHF, beträgt das Durchschnittsalter 77,7 Jahre (+/- 10). Die Darstellung der Altersverteilung erfolgte mit Hilfe eines Histogramms inklusive einer Normalverteilungskurve, welche in der folgenden Abb. 15 ersichtlich ist.
Des Weiteren stellte sich heraus, dass von den insgesamt 203 auswertbaren VHF-Patienten 110 Personen (54,2 %) weiblich und 93 Personen (45,8 %) männlich waren. Das Durchschnittsalter bei Frauen beträgt 80,2 Jahre (+/-9), hingegen weisen Männer ein durchschnittliches Alter von 74,8 Jahren (+/- 10) auf.

Abb. 15: Altersverteilung der Patienten
In einem weiteren Balkendiagramm wird eine genauere Altersverteilung der Geschlechter dargestellt. (Abb. 16)

Abb. 16: Geschlechtspezifische Altersverteilung

Wie auch in der Studie von Wilke et al. (2013) beschrieben, so zeichnet sich auch hier der Trend ab, dass im Gegensatz zu Frauen, Männer in jüngeren Altersstufen häufiger von VHF betroffen sind. Aufgrund der erhöhten Lebenserwartung von Frauen gibt es aber in etwa gleich viele männliche und weibliche VHF-Patienten. [vgl. Wilke et al. (2013)]
6.2 Daten zur Medikation

6.2.1 Antikoagulantien bei bereits antikoagulierten Patienten

In Abb. 17 ist ersichtlich, dass das am häufigsten verordnete Präparat innerhalb des Zeitraums 1.1.2010 bis 31.10.2014 Marcoumar® (27,1 %) ist, gefolgt von Xarelto® (21,1 %), Sintrom® (19,5 %), NMH (15 %), Pradaxa® (10,5 %) und Eliquis® (6,8 %). In dieser Auswertung wurden auch jene 24 VHF-Patienten miteinbezogen, welche im November 2014 im LKH Villach stationär aufgenommen wurden, aber bereits seit den Jahren vor 2010 antikoagulativ behandelt wurden. Bei den VKA wurde festgestellt, dass Marcoumar® um 16,2 % häufiger verschrieben wurde als Sintrom®. Bei den DOAK ist ersichtlich, dass Xarelto® am häufigsten verschrieben wurde, doppelt so oft wie beispielsweise Pradaxa®. Ein möglicher Grund für die häufigere Verschreibung von Xarelto®, im Vergleich zu Pradaxa®, könnte vielleicht der Metabolismus dieses Präparats sein, da Pradaxa® vorwiegend über die Nieren abgebaut wird und somit für Patienten mit Nierenfunktionsstörungen nicht sonderlich geeignet ist. Ein anderer Grund für die häufigere Verschreibung von Xarelto®, im Gegensatz zu Eliquis®, kann möglicherweise dessen frühere Zulassung am Markt sein.

Abb. 17: Antikoagulation bereits antikoagulierter Patienten
Zusammenfassend kann somit gesagt werden, dass 38,4% der Patienten ein DOAK erhalten, 46,6% der Patienten erhalten ein VKA und 15% der Patienten werden mittels NMH therapiert. VKA wurden im Vergleich zu den DOAK öfters verschrieben. Der Grund dafür könnte das Vorkommen dieser Präparate seit mehreren Jahrzehnten, im Gegensatz zu den erst seit ein paar Jahren am Markt befindlichen DOAK sein.

In Österreich muss bei der Verschreibung der Arzneimittel der sogenannte Erstattungskodex beachtet werden, welcher Arzneispezialitäten beinhaltet, die einen Nutzen und einen therapeutischen Effekt annehmbar machen. Diese Arzneispezialitäten sind erstattungsfähig und in Österreich zugelassen. Da diese Spezialitäten mit Sicherheit geliefert werden können, wurden sie in den Erstattungskodex aufgenommen. Je nach Präparat erfolgt eine Unterteilung in unterschiedliche Bereiche. Die Präparate Eliquis® 2,5 mg, Eliquis® 5 mg, Xarelto® 15 mg, Xarelto® 20 mg, Pradaxa® 110 mg, Pradaxa® 150 mg befinden sich im Bereich „RE1“ das bedeutet, dass die Kosten dieser Präparate, nur unter dem Vorweis einer Bewilligung von den Versicherungsträgern übernommen werden. Der kontrollärztliche und chefarztliche Dienst ist für die Bewilligung zuständig. [vgl. Erstattungskodex (2015)]

6.2.1.1 Zeitpunkt der Erstverordnung des Antikoagulans

Tab. 6: Erstverordnung des Antikoagulans

<table>
<thead>
<tr>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
<th>95 % Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 1,115</td>
<td>Sig. 0,296</td>
<td>t -2,111</td>
</tr>
<tr>
<td>Varianzgleichheit angenommen</td>
<td>Varianzgleichheit nicht angenommen</td>
<td>-2,249</td>
</tr>
</tbody>
</table>

Tab. 7: Test auf Einstellung der DOAK

Ein p-Wert von 0,039 bzw. 0,030 zeigt, dass dem größten Teil der Patienten ein DOAK verschrieben wurde, somit konnte der beobachtete Trend bestätigt werden. Zur besseren Veranschaulichung wurde folgend ein Balkendiagramm hinzugefügt. (Abb. 19)
Abb. 19: Vergleich der DOAK- und VKA- Verordnungen in diversen Jahren

6.2.1.2 Umstellung der Antikoagulation seit 2011

<table>
<thead>
<tr>
<th>Umstellung von → auf</th>
<th>Anzahl der Patienten</th>
<th>Prozent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Umstellung</td>
<td>122</td>
<td>91,7</td>
</tr>
<tr>
<td>VKA → DOAK</td>
<td>8</td>
<td>6,0</td>
</tr>
<tr>
<td>NMH → DOAK</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>DOAK → NMH</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>133</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 8: Umstellung auf ein anderes Antikoagulans seit 2011
Seit Anfang 2011 bis Ende Oktober 2014 wurden insgesamt 11 Personen (8,3 %) auf ein anderes Antikoagulans umgestellt, wobei 9 dieser Personen auf ein DOAK umgestellt wurden und nur 2 Personen auf ein NMH. (Tab. 8) Signifikante Aussagen darüber können nicht getroffen werden, da das Patientenkollektiv zu gering ist.

6.2.1.3 Umstellung der Antikoagulation bei KH- Aufenthalt
Beim dieser Untersuchung sind alle Umstellungen, die während des aktuellen KH- Aufenthalts durchgeführt wurden, herangezogen worden, betreffend den Zeitraum von 1.- 30. 11. 2014.

<table>
<thead>
<tr>
<th>Umstellung von → auf</th>
<th>Anzahl der Patienten</th>
<th>Prozent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Umstellung</td>
<td>123</td>
<td>92,5</td>
</tr>
<tr>
<td>VKA → DOAK</td>
<td>4</td>
<td>3,0</td>
</tr>
<tr>
<td>VKA → NMH</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>NMH → DOAK</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>DOAK → VKA</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>DOAK → NMH</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Gesamt</td>
<td>133</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 9: Umstellung auf ein anderes Antikoagulans beim aktuellen KH- Aufenthalt

Es erfolgte nur bei 10 (7,5 %), der insgesamt 133 bereits antikoagulierten Patienten, eine Umstellung auf ein anderes Antikoagulans. 6 Patienten (4,5 %) wurden auf ein DOAK umgestellt, 3 Patienten (2,3 %) auf ein NMH und ein Patient (0,8 %) wurde auf VKA umgestellt. (Tab. 9) Dem Großeil der Patienten wurde somit ein DOAK verordnet. Um aber signifikante Aussagen darüber treffen zu können, bedarf es einer größeren Anzahl an Patienten. Es ist erkennbar, dass DOAK nicht nur eher verschrieben werden, sondern Patienten auch eher auf diese umgestellt werden.
6.2.2 Antikoagulation bei Neuverordnung im KH

Abb. 20: Neuverordnete Antikoagulantien im KH
Vergleicht man die Erstverordnungen mit den Neuverordnungen im KH, so ist ein eindeutiger Trend zu einer geringeren Anzahl an Marcoumar®-Verordnungen ersichtlich. Es muss aber berücksichtigt werden, dass hier ein geringes Patientenklientel betrachtet wurde, jedoch ist ein deutlicher Trend zur Verordnung von DOAK erkennbar.

6.3 Laborparameter

6.3.1 Dosisanpassung bei Nierenfunktionsstörung

Bei Patienten mit Nierenfunktionsstörung muss umso stärker auf die GFR und den Serum-Kreatinin-Wert geachtet werden, da je nach Nierenfunktion und Präparat eine Dosisanpassung erforderlich ist. Genaueres zur Dosisanpassung wurde in dieser Arbeit bereits beschrieben.

In Abb. 21 ist ersichtlich, dass VHF-Patienten mit Nierenfunktionsstörung, meist eine entsprechende Dosisreduktion erhalten. Um die Signifikanz dieser Ergebnisse zu untermauern, wurde der Levene-Test durchgeführt. (Tab. 10) Dieser Test zeigt, dass aufgrund des erhaltenen Wertes von 0,027 die Signifikanz gegeben ist. Somit wird bestätigt, dass in der Altersgruppe zwischen 71-90 Jahren bei VHF-Patienten mit Niereninsuffizienz eine reduzierte Dosierung zum Tragen kommt.

Esstellte sich somit heraus, dass VHF-Patienten mit Nierenfunktionsstörungen in den meisten Fällen eine Dosisreduktion erhalten und somit auch eine Guideline- entsprechende Behandlung erfahren.
Levene-Test der Varianzgleichheit	T-Test für die Mittelwertgleichheit	95 % Konfidenzintervall der Differenz
F | Sig. | t | df | Sig. (2-seitig) | Mittelwertdifferenz | Standardfehlerdifferenz | Unterer | Oberer
Varianzgleichheit angenommen | 11,433 | 0,002 | 2,318 | 31 | 0,027 | 0,41353 | 0,17842 | 0,04964 | 0,77743
Varianzgleichheit nicht angenommen | 2,144 | 0,045 | 0,41353 | 0,19291 | 0,01030 | 0,81677

Tab. 10: Test bei Patienten mit Nierenfunktionsstörung

6.3.2 Dosisanpassung bei Leberfunktionsstörung

Bei Patienten mit Leberfunktionsstörungen muss auf die Leberenzymwerte (GOT, GPT) geachtet werden, vor allem bei der Einnahme von Eliquis® und Pradaxa®. Zusätzlich sollten die Bilirubinwerte bei der Einnahme von Eliquis® betrachtet werden.

Der größte Teil (95,5 %) der bereits antikoagulierten Patienten hat keine Leberfunktionsstörung, jedoch leiden die restlichen 4,5 % an einer Funktionsstörung der Leber. Von den 6 Patienten, (4,5 %) die an einer Leberfunktionsstörung leiden, erhielten 2 Patienten eine angemessene Dosisreduktion. (Tab. 11) Anhand der Tabelle ist auch ersichtlich, dass bei 3 Patienten keine Dosisreduktion durchgeführt wurde und bei einem Patienten konnte aufgrund fehlender Daten keine Dosisbestimmung durchgeführt werden. Es muss hier jedoch angemerkt werden, dass nur 6 Personen den Kriterien entsprachen. Bei einer größeren Stichprobe könnte eine signifikantere Aussage getroffen werden.
6.3.3 Geschlechtspezifische INR- Einstellung

Entprechend den Guidelines ist bei der Therapie mit VKA darauf zu achten, dass der Patient auf einen INR- Wert von 2- 3 eingestellt ist, um einerseits Risiken einer möglichen Blutung zu verhindern und andererseits aber auch einer Thrombose/ Embolie entgegenzuwirken. Daraufhin stellte sich die Frage, ob Frauen im Gegensatz zu Männern eine bessere INR- Einstellung aufweisen. Um die Signifikanz dieser Ergebnisse zu untermauern wurde der Levene Test durchgeführt. (Tab. 12) In diese Untersuchung wurden 74 weibliche VHF-Patienten und 59 männliche VHF-Patienten miteinbezogen. Aufgrund des p- Werts von 0,047 bzw. 0,044 stellte sich heraus, dass es keinen geschlechtspezifischen signifikanten Unterschied bezüglich des optimalen INR- Bereichs gibt.

<table>
<thead>
<tr>
<th>Alter</th>
<th>Dosisreduktion ja</th>
<th>Dosisreduktion nein</th>
<th>nicht bestimmbar, Daten fehlen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Anzahl</td>
<td>Anzahl</td>
</tr>
<tr>
<td>61- 70</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>71- 80</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>81- 90</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>> 91</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 11: Dosierungen von Antikoagulantien bei Patienten mit Leberfunktionsstörung unter Berücksichtigung der jeweiligen Altersklassifikation
<table>
<thead>
<tr>
<th>Varianzgleichheit angenommen</th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
<th>95 % Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Varianzgleichheit angenommen</td>
<td>7,176</td>
<td>0,008</td>
<td>-2,002</td>
</tr>
<tr>
<td>Varianzgleichheit nicht angenommen</td>
<td>-2,038</td>
<td>130,286</td>
<td>0,044</td>
</tr>
</tbody>
</table>

Tab. 12: Prüfung auf geschlechtsspezifische Unterschiede bezüglich des optimalen INR-Bereichs

6.4 Komorbiditäten, Interaktionen, Blutungen

6.4.1 Verteilung der Komorbiditäten

Im folgenden Diagramm (Abb. 22) werden nun die Häufigkeiten der unterschiedlichen Komorbiditäten dargestellt. Hierfür wurden alle VHF-Patienten inkludiert, die bereits eine antikoagulative Therapie erhalten haben, sowie jene Patienten die erst im KH auf ein Antikoagulans eingestellt wurden und auch Patienten die nicht antikoagulativ behandelt wurden. Das Vorhandensein bestimmter Komorbiditäten (z.B. Hypertonie, Diabetes mellitus) wirkt sich auf den CHA2DS2-VASc-Score und den HAS-BLED-Score aus.
Tab. 13: Häufigkeiten und prozentuelle Aufteilung der Komorbiditäten

Wie in Tab. 13 ersichtlich, stellt Hypertonie mit 158 Fällen, die häufigste Komorbidität dar, gefolgt von Herzensuffizienz mit 93 Fällen und chronischer Niereninsuffizienz mit 54 Fällen.

<table>
<thead>
<tr>
<th></th>
<th>Hypertonie</th>
<th>VHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertonie</td>
<td>1</td>
<td>-0,043</td>
</tr>
<tr>
<td>Sig. (2-seitig)</td>
<td>0,624</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>133</td>
<td>133</td>
</tr>
</tbody>
</table>

Tab. 14: Ermittlung des Zusammenhangs zwischen VHF und Hypertonie

6.4.2 Zusammenhang zwischen Interaktionen und Blutungsrisiko

Zusätzlich wurde noch die Frage gestellt, ob es unter DOAK oder VKA häufiger zu Blutungen gekommen ist. Diese Fragestellung konnte, aufgrund der geringen Anzahl an Patienten, welche eine Blutung erlitten, nicht geklärt werden. Hierfür würde eine größere Probandenzahl benötigt werden, um signifikante Aussagen zu ermöglichen.

6.5 Guidelinekonformität

6.5.1 Bestimmung der Scores

Für diese Bestimmungen wurden Patienten mit nicht-valvulärem VHF, die bereits antikoaguliert waren, sowie Patienten denen im KH ein Antikoagulans neuverordnet wurde und Patienten, die kein Antikoagulans erhielten, miteinbezogen.
6.5.1.1 CHADS2-VASc- Score

Von den insgesamt 203 untersuchten nicht-valvulären VHF-Patienten wurde bei 28 Personen (13,8%) der laut ESC-Guidelines empfohlene CHADS2-VASc-Score dokumentiert. Deshalb wurde in dieser Diplomarbeit zusätzlich der CHADS2-VASc-Score bestimmt, um zu überprüfen, ob VHF-Patienten eine OAK empfohlen wird.

Abb. 23: Bestimmung des CHADS2-VASc-Scores

Durch die, in dieser Arbeit durchgeführten Bestimmung des CHADS2-VASc-Scores stellten sich folgende Ergebnisse heraus: jeweils 1 Patient (0,5%) erlangte einen CHADS2-VASc-Score von 0 und 9 Punkten, 13 Patienten erreichten einen Score von 1 Punkt, 17 Patienten erzielten 2 Punkte, 45 Patienten erhielten 3 Punkte, 42 Patienten kamen auf 4 Punkte, 41 Patienten erreichten 5 Punkte, 29 Patienten erlangten 6 Punkte, 11 Patienten erzielen 7 Punkte und 3 Patienten erlangten 8 Punkte im CHADS2-VASc-Score. Somit kann gesagt werden, dass mehr als 77% der VHF-Patienten einen CHADS2-VASc-Score zwischen 3-6 aufweisen. (Abb. 23)

Wie bereits zuvor beschrieben, wäre lt. den ESC-Guidelines eine OAK ab einem CHADS2-VASc-Score von 1 indiziert, sofern eine Abschätzung des Blutungsrisikos sowie auch eine Berücksichtigung der patientenindividuellen Faktoren stattgefunden hat. Eine Ausnahme
stellen hier jedoch all jene Patienten (männlich und weiblich) dar, welche ein niedriges Risiko (Alter < 65 Jahre, „lone atrial fibrillation“) aufweisen. [vgl. Camm et al. (2012)]

Zum Ergebnis, dass das Risiko für einen ischämischen Schlaganfall bei VHF- Patienten mit einem CHA\textsubscript{2}DS\textsubscript{2}-VASc- Score von 1 niedriger ist und somit keine Antikoagulation benötigt wird, kamen hingegen schwedische Forscher. [vgl. Friberg et al. (2015)] Die Antikoagulation bei einem CHA\textsubscript{2}DS\textsubscript{2}-VASc- Score von 1 wird weitherhin kontroversiell diskutiert. Bei der Untersuchung des VHF- Patienten klientels waren aber auch Patienten < 65 Jahre dabei, welche bereits eine antikoagulative Therapie erhielten. Laut den ESC- Guidelines sollten Patienten, welche alleiniges VHF aufweisen, ohne strukturelle Herzerkrankung, keine Antikoagulation erhalten. Bei den hier betroffenen Patienten liegen jedoch Komorbiditäten wie z.B. Herzinsuffizienz, LV- Dysfunktion, Diabetes mellitus, Hypertonie, Schlaganfall, TIA oder eine Gefäßerkrankung vor und somit sollten diese Patienten mittels Antikoagulans behandelt werden.

6.5.1.2 HAS-BLED- Score

Der HAS-BLED- Score dient, wie bereits berschrieben, zur Abschätzung des Blutungsrisikos. Da die Bestimmung des HAS-BLED- Scores bei 4 Patienten (1,98 %) von insgesamt 203 erfolgte, wurde der lt. ESC- Guidelines empfohlene Score zusätzlich bestimmt. Wie auch beim CHA\textsubscript{2}DS\textsubscript{2}-VASc- Score erfolgt hier das Punktesystem von 0- 9. Da aber keiner der Patienten einen höheren HAS-BLED- Score als 6 erreichte, wurden die restlichen Punkte hier nicht mehr angeführt. (Abb. 24) Wie bereits beschrieben, liegt ab einem HAS-BLED- Score ≥ 3 ein hohes Blutungsrisiko vor, was diese Patienten aber nicht von einer antithrombotischen Therapie ausschließen sollte. Stattdessen sollte eine regelmäßige Überprüfung der Initiierung einer Antikoagulationstherapie durchgeführt werden. Bei Addition aller Patienten, die einen HAS-BLED-Score ≥ 3 aufweisen, erhält man somit 104 Patienten (51,2 %), die ein erhöhtes Blutungsrisiko haben. Weiters ist auch erkennbar, dass der Großteil der Patienten (64 %) einen HAS-BLED- Score von 2 und 3 aufweist. (Tab. 16)
Abb. 24: Bestimmung des HAS-BLED-Scores

<table>
<thead>
<tr>
<th>Score-Punkte</th>
<th>Anzahl an Patienten</th>
<th>Prozent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>3,0</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>13,3</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>32,5</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>31,5</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>15,8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3,4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>203</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 16: Auflistung der Bestimmung des HAS-BLED-Scores
6.5.2 Antikoagulation bei CHA₂DS₂-VASc- Score > 1

Abb. 25: Grafische Darstellung guidelinekonformer Behandlung
In der folgenden Tab. 17 wird eine genauere Auflistung der guidelinekonformen Behandlung von VHF-Patienten dargestellt.

<table>
<thead>
<tr>
<th>eigene CHA$_2$DS$_2$-VASc-Bestimmung</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Gesamtsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideline-konforme Therapie ja</td>
<td>6</td>
<td>9</td>
<td>22</td>
<td>23</td>
<td>28</td>
<td>15</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>113</td>
</tr>
<tr>
<td>Guideline-konforme Therapie nein</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>6</td>
<td>9</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>133</td>
</tr>
</tbody>
</table>

Tab. 17: Guidelinekonforme Behandlung der VHF-Patienten

Anhand Abb. 25 ist ersichtlich, dass der Großteil der Patienten eine antikoagulative Behandlung entsprechend der Guidelines erhält. Um die Signifikanz dieser Ergebnisse zu untermauern, wurde der T-Test durchgeführt. Ein p-Wert (Sig.) von 0,295 bzw. 0,266 zeigt, dass der größte Teil der Patienten eine empfohlene OAK erhält, somit konnte eine Signifikanz festgestellt werden. (Tab. 18)

<table>
<thead>
<tr>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>t</td>
</tr>
<tr>
<td>Sig.</td>
<td>Sig. (2-seitig)</td>
</tr>
<tr>
<td>df</td>
<td>Mittelwertdifferenz</td>
</tr>
<tr>
<td></td>
<td>Standardfehlerdifferenz</td>
</tr>
<tr>
<td></td>
<td>95 % Konfidenzintervall der Differenz</td>
</tr>
</tbody>
</table>

| Varianzgleichheit angenommen | 0,018 | 0,895 | -1,051 | 131 | 0,295 | -0,403 | 0,383 | -1,161 | 0,355 |
| Varianzgleichheit nicht angenommen| -1,133 | 32,319 | 0,266 | -0,403 | 0,355 | -1,126 | 0,321 |

Tab. 18: Test zur Überprüfung der richtigen Therapie ab einem CHA$_2$DS$_2$-VASc- Score > 1
6.5.3 Medikation bei älteren VHF-Patienten

Zur Überprüfung der Medikation wurde der U-Test von Mann & Whitney durchgeführt, wobei hier alle Patienten ≥ 81 Jahre miteinbezogen wurden. (Tab. 19) Der U-Test unterscheidet sich mit einem p-Wert von 0,81 signifikant von einer Normalverteilung. Es stellte sich somit heraus, dass die Patienten im LKH Villach, in Unabhängigkeit des Alters, eine guidelinekonforme Therapie erhalten. (=H0)

<table>
<thead>
<tr>
<th>Antikoagulation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U-Test</td>
<td>171,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>199,500</td>
</tr>
<tr>
<td>U</td>
<td>-0,251</td>
</tr>
<tr>
<td>Asymp. Sig. (2-seitig)</td>
<td>0,802</td>
</tr>
<tr>
<td>Exakte Sig. [2*(1-seitige Sig.)]</td>
<td>0,810b</td>
</tr>
</tbody>
</table>

a. Gruppierungsvariable: Altersklassifikation
b. Nicht für Bindungen korrigiert.

Tab. 19: Mann-Whitney-U-Test

6.5.4 Guidelinekonforme Dosierung für den jeweiligen Patienten

<table>
<thead>
<tr>
<th>Verabreichung der richtigen Dosierung</th>
<th>Anzahl an Patienten</th>
<th>Prozent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
<td>88</td>
<td>66,2</td>
</tr>
<tr>
<td>nein</td>
<td>40</td>
<td>30,1</td>
</tr>
<tr>
<td>nicht bestimmbar da Gewicht fehlt</td>
<td>5</td>
<td>3,8</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>133</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tab. 20: Verabreichung der empfohlenen Dosierung

6.5.5 Gründe für die Nicht-Verordnung einer antikoagulativen Therapie

Abb. 26: Begründungen einer nicht-verordneten OAK-Therapie
7 Zusammenfassung

Von den insgesamt 203 untersuchten nicht-valvulären VHF-Patienten sind 54,2 % weiblich und 45,8 % männlich. Das Durchschnittsalter für dieses Patienten klientel beträgt 77,7 Jahre (+/-10), wobei das durchschnittliche Alter der Frauen bei 80,2 Jahren (+/-9) liegt und somit höher ist als das Durchschnittsalter der Männer, welches 74,8 Jahre (+/-10) beträgt. Wie bereits zuvor beschrieben, beträgt das Durchschnittsalter von VHF-Patienten 75-85 Jahre, somit befindet sich das untersuchte Patienten klientel ebenfalls in diesem Bereich.

In anderen Krankenhäusern, wie beispielsweise im Raigmore Hospital in Schottland, wurde die Umstellung von VHF-Patienten auf DOAK ebenfalls überprüft und hierbei stellte sich heraus, dass ein viel stärkerer Anstieg der DOAK-Umstellungen zu verzeichnen ist. Im Jahr 2013 beträgt im Raigmore Hospital die Umstellung von Warfarin auf DOAK beinahe 70 %, wobei dieser Trend kontinuierlich zunimmt. [vgl. Ecker (2014)] In dieser Studie ist ein ähnlicher Trend erkennbar, sofern man die NMH-Verordnungen außer Betracht lässt. Jedoch war der Anstieg der DOAK-Verordnungen in dieser Untersuchung, im Vergleich zum Raigmore Hospital, nicht so stark ausgeprägt.

Des Weiteren wurde überprüft, ob die VHF-Patienten gemäß den ESC-Guidelines behandelt werden. Es kann davon ausgegangen werden, dass die lt. ESC-Guidelines vorgeschlagenen Scores bestimmt, aber einfach nicht dokumentiert wurden. Der EHRA-Score wurde nie dokumentiert, was vielleicht daran liegen könnte, dass dieser Score noch nicht richtig bekannt ist. Der bekannte CHA\textsubscript{2}-DS\textsubscript{2}-VASc-Score wurde bei 28 der 203 Patienten dokumentiert, der HAS-BLED-Score wurde bei 4 der 203 Patienten dokumentiert. Mögliche Gründe, warum die Dokumentation nur selten erfolgt, könnten sein, dass diese Scores generell noch eher unbekannt sind, vor allem der EHRA-Score. Weiters könnte die Dokumentation der Scores des jeweiligen Patienten in anderen Einrichtungen (anderen Krankenhäusern, oder bei anderen Ärzten) erfolgt worden sein, was für mich somit nicht ersichtlich war. Ein anderer Grund könnte möglicherweise der Zeitdruck der Ärzte sein, welcher eine Dokumentation nicht erlaubt oder wie bereits vermutet, dass eine Bestimmung durchgeführt aber nicht dokumentiert wurde. Wenn jedoch eine Dokumentation des CHA\textsubscript{2}-DS\textsubscript{2}-VASc-Scores oder HAS-BLED-Scores erfolgte, dann kam es zu einer Übereinstimmung mit meiner eigens durchgeführten Bestimmung dieser Scores. Da in den Guidelines eine in regelmäßigen Abständen erfolgende Neuinitiierung der Antikoagulation empfohlen wird, wäre es sicher vorteilhaft, wenn diese Scores dann bestimmt und dokumentiert werden würden, um den jeweiligen Verlauf dieser Scores festzustellen. Da bei antikoagulierten Patienten auch eine einmal- jährliche Überprüfung der Nierenparameter empfohlen wird, könnte die Bestimmung und Dokumentation dieser Scores eventuell zeitgleich erfolgen.

Insgesamt sind 85 % der bereits 133 antikoagulierten Patienten lt. den Empfehlungen der Guidelines und mittels richtiger Dosierung antikoaguliert worden. Bei den restlichen 15 % der VHF-Patienten, die nicht guidelinekonform therapiert werden, muss jedoch angemerkt werden, dass ein Großteil dieser Patienten eine OAK-Therapie strikt ablehnt. Hierbei wäre eventuell eine Optimierung möglich, durch eine ausführlichere intensivere Aufklärung bezüglich Antikoagulantien, mit dem Patienten und dessen Angehörige, um etwaige Unklarheiten oder Befürchtungen aus dem Weg zu räumen. Im Allgemeinen kann gesagt werden, dass die Patienten im LKH Villach entsprechend der ESC-Guidelines behandelt werden.
8 Anhang

No (fortlaufende Nummerierung):
Erhebungsdatum:

Datenerhebungsblatt:

I. Daten zur Person:
1. Geburtsdatum:
2. Alter:
3. Geschlecht: m w
4. Auf welcher Station befindet sich der Patient?
5. Gewicht des Patienten: ☒ nicht dokumentiert
6. Aufnahmediagnose:

7. Welche Komorbiditäten hat/ hatte der Patient:
Herzinsuffizienz Hypertonie Diabetes mellitus Schlaganfall
Herzinfarkt chronische Niereninsuffizienz schwere Leberfunktionsstörung
transitorische ischämische Attacke erhöhte Blutungsneigung

8. Patient hat: □ valvuläres ☒ nicht-valvuläres VHF

II. Medikation des Patienten:

<table>
<thead>
<tr>
<th>Medikation</th>
<th>Dosierung</th>
<th>Einnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6h</td>
<td>Mo</td>
</tr>
<tr>
<td>Marcumar</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Narumid FIBL</td>
<td>50mg/1000mg</td>
<td>1</td>
</tr>
<tr>
<td>Raudox</td>
<td>60mg</td>
<td>1</td>
</tr>
<tr>
<td>Exelix FIBL</td>
<td>80mg</td>
<td>1</td>
</tr>
<tr>
<td>Spironolact FIBL</td>
<td>50mg</td>
<td>1</td>
</tr>
<tr>
<td>Coucor FIBL</td>
<td>10mg</td>
<td>1</td>
</tr>
<tr>
<td>Ceredor FIBL</td>
<td>10mg</td>
<td>1</td>
</tr>
<tr>
<td>Nevadipin Tr.</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Gabapentin 1A Hartg.</td>
<td>30mg</td>
<td>1</td>
</tr>
<tr>
<td>Ambulatory H3W Hartg.</td>
<td>30mg</td>
<td>1</td>
</tr>
<tr>
<td>Ambulatory HSR Hartg.</td>
<td>60mg</td>
<td>1</td>
</tr>
<tr>
<td>App. Nocrocortid FIBL</td>
<td>3mg</td>
<td>1</td>
</tr>
<tr>
<td>Noc. Dandula Ekstra FIBL</td>
<td>3mg</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Welches Antikoagulans erhält der Patient? □ Eliquis 2,5mg □ Pradaxa 75mg □ Xarelto 2,5mg
 □ Eliquis 5,0mg □ Pradaxa 110mg □ Xarelto 5,0mg
 □ Pradaxa 150mg □ Xarelto 15mg
 □ Xarelto 10mg □ Xarelto 20mg
 ☒ Marcumar □ Sintrom
 □ NMH □ UFH □ Fondaparinux

3.a. Wird das Präparat in der für den Patienten richtigen Dosierung verabreicht? ☒ ja □ nein
 b. Wenn nein, dann aufgrund: □ Überdosierung □ Unterdosierung □ sonstige

4.a. Regelmäßige Anwendung des Antikoagulans? ☒ ja □ nein □ keine Angabe
 b. Einnahme seit: ☒ Ersteinnahme beim aktuellen Aufenthalt □ nicht bekannt
III. Medikation beim aktuellen Aufenthalt:
1. a. Antikoagulans wird: ☒ eingenommen ☐ abgesetzt ☐ pausiert Seit: __________
 Begründung: ☐ perioperatives Bridging mit: __________________________
 ☐ Patient wird operiert ☐ Umstellung auf anderes Antikoagulans
 ☐ Allgemeinzustand- Verschlechterung während des Aufenthaltes
 ☐ Auffällige Laborwerte: __________________________

2. Umstellung der Medikation: ☐ aktueller Aufenthalt ☐ seit 2011

<table>
<thead>
<tr>
<th>Von</th>
<th>Auf</th>
<th>Ursache bekannt</th>
<th>Ursache unbekannt</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>DOAK</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>VKA</td>
<td>NMH</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>VKA</td>
<td>Fondaparinux</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NMH</td>
<td>VKA</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NMH</td>
<td>DOAK</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NMH</td>
<td>Fondaparinux</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>DOAK</td>
<td>VKA</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>DOAK</td>
<td>NMH</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>DOAK</td>
<td>Fondaparinux</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>DOAK</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>VKA</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>NMH</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

IV. Interaktionen u. Kontraindikationen:
1. Besteht ein Interaktionspotential mit anderen verordneten Arzneimitteln? ☒ ja ☐ nein
2. Welche(s) Arzneimittel? ☐ __________________________ ☒ siehe Anhang
3. Ist aufgrund der Interaktion das Blutungsrisiko erhöht? ☒ ja ☐ nein

V. Scores:
1.a. Wurde der CHA₂DS₂-VASc-Score bestimmt? ☐ ja ☒ nein
 b. Wie hoch ist er? ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9
 c. Aktualität der Bestimmung ist: ☐ aktuell ☐ > 1 Jahr ☐ > 2 Jahre ☐ nicht bestimmbar
 d. Eigene Bestimmung des CHA₂DS₂-VASc-Score liegt bei: ☐ 1 ☐ 2 ☒ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9

2.a. Wurde das Hirnblutungsrisiko abgeschätzt mittels HAS- BLED- Score? ☐ ja ☒ nein
 b. Wie hoch ist es? ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9
 c. Aktualität der Bestimmung ist: ☐ aktuell ☐ > 1 Jahr ☐ > 2 Jahre ☐ nicht bestimmbar
 d. Eigene Bestimmung des HAS- BLED- Score liegt bei: ☐ 1 ☒ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9

3.a. Wurde der EHRA- Score bestimmt? ☐ ja ☒ nein
 b. Wie hoch ist er? ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6 ☐ 7 ☐ 8 ☐ 9

VI. Bestimmung der INR bei Patienten mit VKA oder NMH:
1.a. Wie ist die INR (PZI- Wert) des Patienten? ☒ 3.2
 b. Wie oft finden INR- Kontrollen statt? ☐ zu Beginn der Therapie alle 1-2 Tage
 ☐ bei eingestelltem Patient alle 3-4 Wochen
 ☐ seltener ☒ nicht nachvollziehbar
VII. Nieren- u. Leberstatus des Patienten:
1.a. Wurden die Parameter Kreatinin und eGFR bestimmt? ☒ ja ☐ nein
b. Derzeitiger eGFR-Wert ist: 56
 c. Wieviel beträgt der Serum-Kreatinin-Wert? 0,05

☐ Bei Einnahme von Eliquis/ Pradaxa relevant:
 2.a. Wurden die Leberenzyme (ALT/ AST) bestimmt? ☐ ja ☒ nein
 b. Wie hoch ist der aktuelle ALT-Wert? (GPT)
 c. Wie hoch ist der aktuelle AST-Wert? (GOT)

☐ Bei Einnahme von Eliquis relevant:
 3.a. Wurde der Gesamt-Bilirubinwert bestimmt? ☐ ja ☒ nein
 b. Wie hoch ist der derzeitige Bilirubinwert?
 4.a. Die Laborparameter wurden erfasst innerhalb: ☐ dieser Woche ☐ vor 2 Wochen ☒ > 1 Monat

VIII. Therapie nach ESC- Guidelines 2012:
1.a. Bekommt der Patient das für seine Erkrankung, laut ESC- Guidelines, empfohlene Präparat? ☒ ja ☐ nein
 b. Wenn nein, dann Begründung: ☐ Alter ☐ Nierenfunktion ☐ nicht einstellbarer INR- Wert
 ☐ erhöhte Blutungsneigung ☐ erhöhte Sturzgefahr
 ☒ Ablehnung durch Patienten ☐ sonstige

Erfassungshilfen:

CHA₂DS₂-VASc-Score:

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Herzinsuffizienz/ LV Dysfunktion</td>
<td>1</td>
</tr>
<tr>
<td>H Bluthochdruck</td>
<td>1</td>
</tr>
<tr>
<td>A2 Alter ≥75 Jahre</td>
<td>2</td>
</tr>
<tr>
<td>D Diabetes mellitus</td>
<td>1</td>
</tr>
<tr>
<td>S2 Schlaganfall/ TIA/ Thromboembolie in der Anamnese</td>
<td>2</td>
</tr>
<tr>
<td>V Gefäßkrankung (durchgemachter Herinfarkt, pAVK, Aortenplaque)</td>
<td>1</td>
</tr>
<tr>
<td>A Alter (65-74 Jahre)</td>
<td>1</td>
</tr>
<tr>
<td>S Weibliches Geschlecht</td>
<td>1</td>
</tr>
</tbody>
</table>

HAS- BLED- Score:

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Hypertonie</td>
<td>1</td>
</tr>
<tr>
<td>A Schwere Leber-/ Nierenfunktionsstörung</td>
<td>1-2</td>
</tr>
<tr>
<td>S Schlagenfall in Vorgeschichte</td>
<td>1</td>
</tr>
<tr>
<td>B Blutungsneigung</td>
<td>1</td>
</tr>
<tr>
<td>L Schwankende INR- Werte</td>
<td>1</td>
</tr>
<tr>
<td>E Alter >65 Jahre</td>
<td>1</td>
</tr>
<tr>
<td>D Medikamente (ASS, NSAR) oder Alkoholmissbrauch</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Auswahl des Antikoagulans

[Diagramm]

Antikoagulant therapy with aspirin plus clopidogrel, or — less effectively — aspirin only should be considered in patients who refuse any OAC, or cannot tolerate anticoagulants for reasons unrelated to bleeding. If there are contraindications to OAC, or antikoagulant therapy, left atrial appendage occlusion, closure or excision may be considered.

Colour: CHA₂DS₂-VASc: green = 0, blue = 1, red ≥2
Line solid = best, option dashed = alternative option.
AP = atrial fibrillation, CHA₂DS₂-VASc = see text; HAS-BLED = see text; NOAC = novel oral anticoagulants; OAC = oral anticoagulants; VKA = vitamin K antagonist.

*includes rheumatic valvular disease and prosthetic valves.
Interaktionscheck:

Phenprocoumon und Duloxetin

Furosemid und Phenprocoumon

Metamizol und Phenprocoumon

Pantoprazol und Phenprocoumon

Es gibt keine Hinweise für eine klinisch relevante Interaktion in dieser Kombination. Die Prothrombinzeit scheint unverändert gegenüber Phenprocoumon-Monotherapie. Trotzdem empfiehlt die Fachinformation von Pantoprazol, die Gerinnungsparameter beim Beginn oder beim Absetzen der Kombinationstherapie sorgfältig zu überwachen.

Phenprocoumon und Rosuvastatin

Phenprocoumon und Spironolacton

9 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACS</td>
<td>Akutes Koronarsyndrom</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>AT</td>
<td>Antithrombin</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DOAK</td>
<td>Direkte orale Antikoagulantien</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat-Oxalacetat-Transaminase</td>
</tr>
<tr>
<td>GP</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HRS</td>
<td>Heart Rhythm Society</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzerkrankung</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamidadenindinukleotidphosphat</td>
</tr>
<tr>
<td>NMH</td>
<td>Niedermolekulares Heparin</td>
</tr>
<tr>
<td>NOAK</td>
<td>Neue orale Antikoagulantien</td>
</tr>
<tr>
<td>NSAID</td>
<td>nicht- steroidale Antirheumatika</td>
</tr>
<tr>
<td>NSAR</td>
<td>nicht- steroidale Antirheumatika</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
</tbody>
</table>
OAK orale Antikoagulation
PAE Pulmonalembolie
PAF Plättchenaktivierender Faktor
PDGF Platelet Derived Growth Factor
PGG₂ Prostaglandin G2
PGH₂ Prostaglandin H2
RAAS Renin- Angiotensin- Aldosteron- System
TEE transösophageale Echokardiographie
TIA transistorische ischämische Attacke
TxA₂ Thromboxan A₂
UFH Unfraktioniertes Heparin
VHF Vorhofflimmern
VKA Vitamin- K- Antagonist
VTE Venöse Thromboembolie
vWF Von-Willebrand-Faktor
10 Literaturverzeichnis

Eliquis® (Apixaban) Fachinformation, (2014). Bristol-Myers Squibb/ Pfizer EIEG, Uxbridge Business Park, Sanderson Road, Uxbridge, Middlesex, UB8 1DH, UK. Zugriff: 12. 3. 2015

104

Xarelto® (Rivaroxaban) Fachinformation (2013). Bayer Pharma AG, Berlin, Deutschland Zugriff: 11. 3. 2015