Titelaufnahme

Titel
Local minimization algorithms for dynamic programming equations
Verfasser/ VerfasserinKalise, Dante ; Kröner, Axel ; Kunisch, Karl In der Gemeinsamen Normdatei der DNB nachschlagen
Erschienen in
SIAM Journal on Scientific Computing, 2016, Jg. 38, H. 3, S. A1587-A1615
ErschienenSociety for Industrial and Applied Mathematics, 2016
Ausgabe
Accepted version
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)dynamic programming / Hamilton-Jacobi-Bellman equations / semi-Lagrangian schemes / first order primal-dual methods / semi-smooth Newton methods
ISSN1064-8275
URNurn:nbn:at:at-ubg:3-3492 Persistent Identifier (URN)
DOI10.1137/15M1010269 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Local minimization algorithms for dynamic programming equations [3.57 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

The application of the dynamic programming principle in continuous-time optimal control problems leads to nonlinear Hamilton-Jacobi-Bellman equations which require the minimization of a nonlinear mapping over the set of admissible controls. In the context of the numerical approximation of such equations, this minimization is often performed by comparison between a finite number of elements of the control set. In this paper we demonstrate the importance of an accurate realization of these minimization problems and propose algorithms by which this can be achieved effectively. The considered class of equations includes nonsmooth control problems with 1penalizations which lead to sparse controls.

Notiz