Titelaufnahme

Titel
An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem
VerfasserHintermüller, Michael In der Gemeinsamen Normdatei der DNB nachschlagen ; Hinze, Michael ; Tber, Moulay H.
Erschienen in
Optimization methods and software, 2011, Jg. 4/5, S. 777-811
ErschienenTaylor & Francis
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)CahnHilliard model / double obstacle free energy / MoreauYosida regularization technique / semi\-smooth Newton method / adaptive finite elements
ISSN1029-4937
URNurn:nbn:at:at-ubg:3-1098 Persistent Identifier (URN)
DOIdoi:10.1080/10556788.2010.549230 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem [2.91 mb]
Links
Nachweis
Zusammenfassung (Englisch)

An adaptive finite-element semi-smooth Newton solver for the CahnHilliard model with double obstacle free energy is proposed. For this purpose, the governing system is discretized in time using a semi-implicit scheme, and the resulting time-discrete system is formulated as an optimal control problem with pointwise constraints on the control. For the numerical solution of the optimal control problem, we propose a function space-based algorithm which combines a MoreauYosida regularization technique for handling the control constraints with a semi-smooth Newton method for solving the optimality systems of the resulting sub-problems. Further, for the discretization in space and in connection with the proposed algorithm, an adaptive finite-element method is considered. The performance of the overall algorithm is illustrated by numerical experiments.

Notiz