Titelaufnahme

Titel
Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration
VerfasserHintermüller, Michael In der Gemeinsamen Normdatei der DNB nachschlagen ; Rincon-Camacho, Maria M.
Erschienen in
Inverse Problems, Bristol [u.a.], 2010, Jg. 26, H. 8, S. 085005-30 S.
ErschienenIOP
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (GND)Bildrekonstruktion / Optimierung / Online-Publikation
ISSN1361-6420
URNurn:nbn:at:at-ubg:3-1100 Persistent Identifier (URN)
DOIdoi:10.1088/0266-5611/26/8/085005 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration [2.38 mb]
Links
Nachweis
Zusammenfassung (Englisch)

A total variation (TV) model with an L1-fidelity term and a spatially adapted regularization parameter is presented in order to reconstruct images contaminated by impulse noise. This model intends to preserve small details while homogeneous features still remain smooth. The regularization parameter is locally adapted according to a local expected absolute value estimator depending on the statistical characteristics of the noise. The numerical solution of the L1-TV minimization problem with a spatially adapted parameter is obtained by a superlinearly convergent algorithm based on Fenchel-duality and inexact semismooth Newton techniques, which is stable with respect to noise in the data. Numerical results justifying the advantage of such a regularization parameter choice rule are presented.

Notiz