Titelaufnahme

Titel
Minimization of the ground state for two phase conductors in low contrast regime
Verfasser/ VerfasserinConca, Carlos ; Laurain, Antoine ; Mahadevan, Rajesh
Erschienen in
SIAM Journal on Applied Mathematics, Philadelphia, Pa., 2012, Jg. 72, H. 4, S. 1238-1259
ErschienenSIAM
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)eigenvalue optimization / two-phase conductors / low contrast regime / asymptotic analysis
ISSN1095-712X
URNurn:nbn:at:at-ubg:3-1170 Persistent Identifier (URN)
DOIdoi:10.1137/110847822 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Minimization of the ground state for two phase conductors in low contrast regime [1.56 mb]
Links
Nachweis
Zusammenfassung (Englisch)

In this article we consider the problem of the optimal distribution of two conducting materials with given volume inside a fixed domain, in order to minimize the first eigenvalue (the ground state) of a Dirichlet operator. It is known, when the domain is a ball, that the solution is radial, and it was conjectured that the optimal distribution of the materials consists of putting the material with the highest conductivity in a ball around the center. We show that this conjecture is not true in general. For this, we consider the particular case where the two conductivities are close to each other (low contrast regime) and we perform an asymptotic expansion with respect to the difference of conductivities. We find that the optimal solution is the union of a ball and an outer ring when the amount of the material with the higher density is large enough.

Notiz