Titelaufnahme

Titel
A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors / M. Hintermueller, T. Wu
Verfasser/ VerfasserinHintermüller, Michael In der Gemeinsamen Normdatei der DNB nachschlagen ; Wu, Tao
Erschienen in
Computational Optimization and Applications, New York, NY [u.a.], 2014, Jg. 57, H. 1, S. 1-25
ErschienenSpringer
Ausgabe
Accepted version
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)Sparsity / Concave priors / Nonconvex minimization / Semismooth Newton method / Superlinear convergence
ISSN1573-2894
URNurn:nbn:at:at-ubg:3-1947 Persistent Identifier (URN)
DOIdoi:10.1007/s10589-013-9583-2 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors [3.83 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

A general class of variational models with concave priors is considered for obtaining certain sparse solutions, for which nonsmoothness and non-Lipschitz continuity of the objective functions pose significant challenges from an analytical as well as numerical point of view. For computing a stationary point of the underlying variational problem, a Newton-type scheme with provable convergence properties is proposed. The possible non-positive definiteness of the generalized Hessian is handled by a tailored regularization technique, which is motivated by reweighting as well as the classical trust-region method. Our numerical experiments demonstrate selected applications in image processing, support vector machines, and optimal control of partial differential equations.

Notiz