Titelaufnahme

Titel
Obstacle Problems with Cohesion: A Hemi-Varitional Inequality approach and its efficient numerical solution
VerfasserHintermüller, Michael In der Gemeinsamen Normdatei der DNB nachschlagen ; Kovtunenko, Victor A. ; Kunisch, Karl In der Gemeinsamen Normdatei der DNB nachschlagen
Erschienen in
SIAM journal on control and optimization / Society for Industrial and Applied Mathematics, Philadelphia, Pa. : Soc., 1.1962 -, Jg. 21, H. 2, S. 491-516
ErschienenSIAM
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)obstacle problem with cohesion / generalized complementarity problem / hemivariational inequality / nonsmooth optimization / primal-dual active set algorithm / generalized Newton method
ISSN1095-7138
URNurn:nbn:at:at-ubg:3-458 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Obstacle Problems with Cohesion: A Hemi-Varitional Inequality approach and its efficient numerical solution [1.23 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

Motivated by an obstacle problem for a membrane subject to cohesion forces, constrained minimization problems involving a nonconvex and nondifferentiable objective functional representing the total potential energy are considered. The associated first-order optimality system leads to a hemivariational inequality, which can also be interpreted as a special complementarity problem in function space. Besides an analytical investigation of first-order optimality, a primal-dual active set solver is introduced. It is associated to a limit case of a semismooth Newton method for a regularized version of the underlying problem class. For the numerical algorithms studied in this paper, global as well as local convergence properties are derived and verified numerically.

Notiz