Titelaufnahme

Titel
Der stationäre Zustand in Marktwirtschaften mit notwendigen Wasserressourcen : eine modelltheoretische Analyse / Elisabeth Poschauko
Verfasser/ VerfasserinPoschauko, Elisabeth
Begutachter / BegutachterinFarmer, Karl ; Ungericht, Bernhard
Erschienen2011
Umfang183 Bl. : 2 Zsfassungen
HochschulschriftGraz, Univ., Diss., 2011
Anmerkung
Zsfassung in dt. und engl. Sprache
SpracheDeutsch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (GND)Wasserreserve / Marktwirtschaft / Wasserreserve / Marktwirtschaft / Online-Publikation
URNurn:nbn:at:at-ubg:1-30818 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Der stationäre Zustand in Marktwirtschaften mit notwendigen Wasserressourcen [1.44 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

Im Mittelpunkt dieser Arbeit steht die Ressource Wasser mit ihren spezifischen Eigenschaften, der absoluten Lebensnotwendigkeit und der Nicht-Ersetzbarkeit für die Menschen und Ökonomien der Erde. Ausgehend von der klassischen Hypothese, dass eine wettbewerbliche Marktwirtschaft, die von endlichen natürlichen Ressourcen abhängig ist, einem stationären Zustand zustrebt, wurden in dieser Arbeit die Existenz, die dynamische Stabilität und die komparativ-dynamischen Eigenschaften eines solchen stationären Zustands im Rahmen von zwei Kernmodellen, einem OLG-Modell für weniger und einem analogen für höher entwickelte Regionen, mit unterschiedlichen Annahmen im Hinblick auf die Wasserverfügbarkeit, das Bevölkerungswachstum und die Kapitalausstattung untersucht. Zu diesem Zweck wurden drei Forschungsfragen beantwortet: Wie können die Eigenschaften der Ressource Wasser in intertemporalen OLG-Modellen modelltheoretisch erfasst werden? Unter welchen Voraussetzungen gibt es in beiden Modellen stationäre Zustände und sind diese dynamisch stabil? Und Einfluss der stationären Bevölkerung in beiden Regionen auf die Wasserentnahmen und den Ressourcenbestand pro Kopf? Die spezifischen Eigenschaften der Ressource Wasser wurden durch die Wahl der Nutzenfunktion der Haushalte (Stone-Geary-Nutzenfunktion), die Form der Regenerationsfunktion und in der Produktionsfunktion der Produzenten (Wasser als notwendiger Produktionsfaktor) berücksichtigt. Es wurde gezeigt, dass unter Einhaltung der Bedingungen für die Existenz eines intertemporalen Gleichgewichts ein nicht-trivialer stationärer Zustand existiert und dieser auch dynamisch stabil ist. Eine Prüfung der Ergebnisse im Hinblick auf die Realitätsnähe der Annahmen, und damit auch der Modellergebnisse, hat Grenzen der Modelle aufgezeigt und es wurden deshalb fünf Erweiterungsmöglichkeiten der Kernmodelle beschrieben.

Zusammenfassung (Englisch)

Abstract The main issue of this doctoral thesis deals with the resource of water and its specific characteristics, its absolute necessity for life and its non-replaceability in use for all humans and economies in the world. Starting from the classical hypothesis that a competitive market economy depending on finite natural resources wants to reach steady-state this doctoral thesis analyses the existence, dynamic stability and comparative dynamic characteristics of such a steady-state within the framework of two OLG models with different hypotheses in view of availability of water, population growth and manmade capital. There is one model for less developed and one analogous model for highly developed regions. Three questions are being addressed: which possibilities are there to describe the characteristics of the resource of water in a model-theoretical intertemporal OLG- framework? Under which conditions are there steady-states in the models, and are they dynamically stable? How does a stationary population in both regions affect the extraction of water and the per-capita stock of water? The specific characteristics of the resource of water were taken into account by selecting the utility function of households (Stone-Geary utility function), by the form of its regeneration function, and in the production function of producers (water being an important production factor). It was shown that, if the conditions for the existence of an intertemporal equilibrium are fulfilled, a dynamically stable non trivial steady-state exists. An analysis of the hypotheses of the models and also a study with regard to the results of the models showed the restrictions imposed on the models and, therefore, five possibilities of enlargement of the models were described.